EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面叶栅气动试验研究进展与展望

张庆典 马宏伟 杨益 肖安琪

张庆典, 马宏伟, 杨益, 肖安琪. 平面叶栅气动试验研究进展与展望. 力学学报, 2022, 54(7): 1-23 doi: 10.6052/0459-1879-21-684
引用本文: 张庆典, 马宏伟, 杨益, 肖安琪. 平面叶栅气动试验研究进展与展望. 力学学报, 2022, 54(7): 1-23 doi: 10.6052/0459-1879-21-684
Zhang Qingdian, Ma Hongwei, Yang Yi, Xiao Anqi. Progress and prospect of aerodynamic experimental research on linear cascade. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-23 doi: 10.6052/0459-1879-21-684
Citation: Zhang Qingdian, Ma Hongwei, Yang Yi, Xiao Anqi. Progress and prospect of aerodynamic experimental research on linear cascade. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-23 doi: 10.6052/0459-1879-21-684

平面叶栅气动试验研究进展与展望

doi: 10.6052/0459-1879-21-684
基金项目: 国家自然科学基金(51776011), 国家科技重大专项(2017-V-0016-0068)和国防科技重点实验室基金(6142702020218)资助项目
详细信息
    作者简介:

    马宏伟, 教授, 主要研究方向: 叶轮机气体动力学、航空发动机测试技术. E-mail: mahw@buaa.edu.cn

    通讯作者:

    Email: mahw@buaa.edu.cn

  • 中图分类号: TK14

PROGRESS AND PROSPECT OF AERODYNAMIC EXPERIMENTAL RESEARCH ON LINEAR CASCADE

  • 摘要: 平面叶栅气动试验传统上是验证压气机、涡轮的基元性能的主要手段, 近年来国内外研究人员利用平面叶栅开展了大量的流动测量试验, 以揭示叶栅内部复杂流动现象的本质和规律、探索减小叶栅内流动损失的方法. 本文从试验装置、测试技术和研究内容三个方面, 综述了近年来平面叶栅气动试验研究的进展情况. 首先介绍了平面叶栅试验装置的发展及提高平面叶栅试验段流场品质的措施; 其次介绍了叶栅气动试验采用的部分流场测试技术, 包括叶片表面压力场、叶片表面温度场、内流速度场及流场可视化等测试技术, 分析了这些测试技术的进展和存在的问题; 然后梳理了近年来平面叶栅试验研究的相关科学问题及进展, 包括跨音速叶栅中的激波研究, 叶顶间隙泄漏流动研究, 叶型优化研究, 多尺度非定常旋涡结构研究, 振动环境下叶栅流场研究等; 最后对平面叶栅气动试验研究方向进行了展望. 通过了解叶栅内复杂流动现象及本质, 为进一步探索和提高压气机、涡轮的气动性能提供技术支撑.

     

  • 图  1  平面叶栅试验段示意图[1]

    Figure  1.  Schematic of linear cascade[1]

    图  2  叶片吸力面压力的时均和脉动分布结果[36]

    Figure  2.  Mean and RMS PSP field images of blade’s suction surface[36]

    图  3  叶栅表面压力分布的PSP测量方案

    Figure  3.  Flow chart for surface pressure measurement of blade by PSP

    图  4  表面全覆盖测量[41]

    Figure  4.  Full-blade coverage measurement[41]

    图  5  内窥镜测试方案[48]

    Figure  5.  Full-field endoscopic measurement[48]

    图  6  叶片表面温度分布的液晶测温方案

    Figure  6.  Flow chart for surface temperature distribution of cascade blade by liquid crystal

    图  7  红外热成像法测量试验装置[61]

    Figure  7.  The schematic of the test section and instrumentation with infrared thermography[61]

    图  8  红外热成像法测温流程

    Figure  8.  Flow chart for infrared thermograph measurement

    图  9  叶栅试验的SPIV光路布置[64]

    Figure  9.  SPIV setup of cascade experiment[64]

    图  10  叶栅通道的二维PIV测量平面布局[66]

    Figure  10.  Layout of 2 D-PIV measured planes in cascade[66]

    图  11  采用荧光示踪法的PIV粒子图像和互相关结果[70]

    Figure  11.  Fluorescence particle image and cross correlation results[70]

    图  12  叶栅稠度对叶片影响的油流可视化试验[73]

    Figure  12.  Effects of cascade solidity for inlet flow conditions[73]

    图  13  叶顶加装单侧肋条的油流可视化试验图[74]

    Figure  13.  Oil flow visualization of partial squealer[74]

    图  14  激波诱导的湍流边界层分离[79]

    Figure  14.  Schematic of shock wave/boundary layer interactions[79]

    图  15  纹影结果与彩色油流图谱[73]

    Figure  15.  Schlieren diagram and oil flow visualization[73]

    图  16  跨音叶栅吸力面试验结果[80]

    Figure  16.  Results of suction surface of transonic cascade[80]

    图  17  开设凹槽型波纹的涡轮叶片和叶栅纹影图[87]

    Figure  17.  Grooved turbine blade and its schlieren visualization[87]

    图  18  叶尖泄漏涡结构的氢气泡流场显示[89]

    Figure  18.  Bubble visualization of tip leakage vortex[89]

    图  19  跨音压气机叶片激波与泄漏流相互作用[94]

    Figure  19.  The interaction schematic between shock wave and tip leakage flows for transonic compressor blade[94]

    图  20  跨音速涡轮叶片间隙流动示意图[97]

    Figure  20.  Tip flow structures of transonic turbine blade[97]

    图  21  原始翼型与优化翼型的纹影图谱[123]

    Figure  21.  Schlieren image of original and modified airfoil[123]

    图  22  压气机叶栅内流动损失的涡动力原理[126]

    Figure  22.  Vortex dynamic mechanism of curved blade affecting flow loss in compressor cascade[126]

    图  23  无周期性压力扰动时PSP时均和脉动图谱[147]

    Figure  23.  Average and RMS PSP images without shock oscillation[147]

    图  24  有周期性压力扰动时PSP时均和脉动图谱[147]

    Figure  24.  Average and RMS PSP images with shock oscillation[147]

    图  25  平面叶栅气动试验研究思路和途径

    Figure  25.  Research approaches of aerodynamic experiment on linear cascade

    图  26  平面叶栅气动试验中的复杂流动

    Figure  26.  Complex flow phenomena of aerodynamic experiment on linear cascade

    表  1  试验段流场品质研究

    Table  1.   Investigation on flow field quality in test section

    研究对象研究内容研究结果
    栅前整流部件改进阻尼网阻尼网材料对流场品质的影响[2]阻尼网整流性能受材料弹性模量影响较大
    阻尼网与风洞壁面连接的刚性夹具装置优化[3]带有可调张力机构的阻尼网装置可提高整流效果
    阻尼网在风洞中的安装位置[4]扩压段处安装阻尼网, 可减少流动分离
    收缩段布置拌线和阻尼网联合整流 [5]试验段湍流强度和气流不均匀度减小
    蜂窝器蜂窝器和阻尼网组合整流效果[6]相比阻尼网, 蜂窝器的整流效果并不明显
    蜂窝器形状、尺寸对试验段整流效果的影响[7]相同的长径比下, 蜂窝尺寸越小, 湍流强度越低
    扩压段扩压段采用柔性壁, 并将扩压段几何型线优化[8-9]优化后可降低稳流段内阻尼网和蜂窝器引起的压力损失并提高整体的整流效果
    叶栅侧壁边界层研究叶片数目叶片数目对高亚音叶栅风洞进口流场影响[10]当叶片数小于7个时, 无法保证进口流场在至少2个通道内实现较好的均匀性
    叶栅侧壁形状多参数优化[11-12]可减少使用叶片的数目实现流场的周期性
    单通道叶栅风洞跨音单通道叶栅风洞设计[13]可以耗费较低的风洞流量实现周期性的跨音速来流条件
    通道二次流研究[14-15]减小试验所需的流量, 且有利于光学测试的光路布置[14]
    单通道进口两侧的排气装置可减弱“叶片”前缘的边界层厚度和马蹄涡强度[15]
    气膜冷却效率研究[16]能较好的实现跨音条件下不同形状气膜冷却孔对端壁冷却效率的影响研究
    边界层抽吸侧壁边界层抽吸与出口尾板相结合对高亚音速气流, 需联合调节侧壁边界层抽吸量和尾板位置[17]
    栅后流场周期性研究尾板采用可转动尾板且在尾板上开设一定角度的斜孔[18-19]保证出口侧壁附近气流不受外界大气干扰和混合的影响, 同时避免了激波在尾板表面发生反射
    尾板开孔率、开孔直径等参数对栅后气流周期性的影响[20-21]
    拆除压力侧尾板, 同时调整边界层抽吸量和尾板转动角度[22]
    双层侧壁且内壁可调, 作为叶栅的前挡板和尾板[23-24]能实现叶栅中间两个通道的周期性
    下载: 导出CSV

    表  2  国内外关于控制叶顶间隙泄漏流的叶栅试验研究

    Table  2.   Overseas and domestic control schemes of tip clearance leakage flow on linear cascade

    控制手段研究内容研究结果
    叶顶喷气从叶顶表面的污垢清除孔喷出冷却气体[99-100]间隙较小时, 喷出气体能碍间隙流动的发展; 间隙较大时效果不明显
    叶片前缘与叶顶间开设贯通通道, 形成射流[101]喷射方向朝向压力侧时, 抑制效果较明显
    叶片压力面上和叶顶间开设通孔, 形成射流[102]对叶顶间隙泄漏流具有一定抑制作用
    非设计条件工况, 叶顶喷气的抑制效果[103-104]叶顶后部的孔要比前部的孔具有更好的抑制性能
    凹槽/凹坑类叶顶结构凹槽内部的旋涡流动对泄漏流的抑制效果[74, [105]小间隙时, 控制作用明显; 间隙较大时, 控制作用减弱
    其他新型凹槽结构不同高度的台阶凹槽[106]相比于普通凹槽叶顶和平叶顶, 能对间隙泄漏流动具有较好的抑制效果
    非均匀厚度的凹槽[107]
    开口凹槽[28]
    加装横向肋条的凹槽[108]
    泪滴状凹坑、勾槽[109]泪滴状凹坑阵列结构由于没有微小边缘和尖端设计, 可承受更大的热应力
    蜂窝型叶顶结构[110-111]蜂窝腔内会形成较小的涡流, 从而阻碍间隙泄漏流动
    叶顶增加小翼压力侧小翼和吸力侧的小翼对泄漏流的控制效果[112-113]小翼可减少泄漏流的驱动压差, 减少泄漏损失, 在压力侧增加小翼, 更为有效
    下载: 导出CSV

    表  3  端部二次流的主动控制试验研究

    Table  3.   Active flow control of endwall secondary flow

    控制手段研究内容研究结果
    边界层抽吸技术端壁一侧开槽抽吸[133]抽吸附近流动稳定, 另一侧端壁附近仍有分离流动
    角涡位置处抽吸[134]对角涡的抑制作用明显
    叶片不同展向位置开槽抽吸[135]吸力面局部位置抽吸会导致其他部分流场的恶化, 只有采用全叶展方向上抽吸能有效的消除吸力面上的流动分离
    射流技术稳定射流端壁和吸力面联合射流吹扫[136]端壁处吹气能减少二次流, 在吸力面吹气则可减少叶片表面边界层分离
    合成射流合成射流激发器的安装位置[137]吸力面的合成射流可控制吸力面的流动分离, 当射流位于分离点上游时, 流动控制效果最好
    合成射流相比于脉冲射流和稳定射流的
    控制效果评判[138]
    合成射流在低激励幅值时的效率略低, 不需要任何的质量流量输入, 所节约的能量大概为激励器自身消耗能量的两倍
    下载: 导出CSV
  • [1] Stadtmüller P, Fottner L . A test case for the numerical investigation of wake passing effects on a highly loaded lp turbine cascade blade//ASME Turbo Expo 2001: Power for Land, Sea, and Air, 2001
    [2] Mehta RD. Turbulent boundary layer perturbed by a screen. AIAA Journal, 1985, 23(9): 1335-1342 doi: 10.2514/3.9089
    [3] Zhao X, Shi Y, Wang T. Optimization design of damping net device used in supersonic wind tunnel//Proceedings of the Seventh China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, 2012: 1
    [4] Fadilah PA, Erawan DF. Effect of applying screen and honeycomb to the flow characteristic in wind tunnel based on CFD simulation. Journal of Physics Conference Series, 2018, 1130(1): 1-11
    [5] Soltani MR, Ghorbanian K, Manshadi MD. Application of screens and trips in enhancement of flow characteristics in subsonic wind tunnels. Scientia Iranica, 2010, 17(1): 419-424
    [6] Vinayak K, Niranjan S, Sandip DC. Simulation of honeycomb–screen combinations for turbulence management in a subsonic wind tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(1): 37-45 doi: 10.1016/j.jweia.2010.10.006
    [7] Li C, Liu Y, Cheung J. Wind tunnel test of honeycomb in improving flow quality. Advanced Materials Research, 2013, 774(1): 275-278
    [8] Kouhi M, Manshadi MD, Onate E. Geometry optimization of the diffuser for the supersonic wind tunnel using genetic algorithm and adaptive mesh refinement technique. Aerospace Science & Technology, 2014, 36(7): 64-74
    [9] Farahat S, Javadpour SM, Hamidi HE. Optimization of a supersonic wind tunnel diffuser using genetic algorithm. Engineering Computations, 2015, 32(6): 1691-1707 doi: 10.1108/EC-04-2014-0077
    [10] 蔡明, 高丽敏, 刘哲等. 不同条件下平面叶栅风洞流场品质的试验研究. 推进技术, 2021, 42(5): 1162-1170 (Cai Ming, Gao Limin, Liu Zhe, et al. Experimental study on flow field quality of linear cascade wind tunnel under different conditions. Journal of Propulsion Technology, 2021, 42(5): 1162-1170 (in Chinese)

    Cai Ming, Gao Limin, Liu Zhe, et al. Experimental study on flow field quality of linear cascade wind tunnel under different conditions. Journal of Propulsion Technology, 2021, 42(5): 1162-1170(in Chinese)
    [11] Lepicovsky J, Chima RV, Mcfarland ER, et al. On flowfield periodicity in the NASA transonic flutter cascade. American Society of Mechanical Engineers, 2001, 123(3): V001-T03
    [12] Cho CH, Cho SY, Gorrell SE, et al. An inverse design of a double pitch passage for an infinite cascade model experiment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(1): 157-167 doi: 10.1243/09544062JMES1552
    [13] Qenawy M, Lin Y, Liu Y, et al. A novel single passage transonic wind tunnel for turbine vane film cooling. Journal of Engineering for Gas Turbines and Power, 2020, 142(7): 1-12
    [14] Chung JT, Simon TW. Three-dimensional flow near the blade/endwall junction of a gas turbine: application of a boundary layer fence//Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration. Orlando, Florida, USA, 1991
    [15] Bailey DA. Study of mean and turbulent velocity fields in a large scale turbine vane passage. Journal of Engineering for Power, 1980, 102(1): 88-95 doi: 10.1115/1.3230239
    [16] Zhou W, Qenawy M, Shao H, et al. Turbine vane endwall film cooling with barchan-dune shaped ramp in a single-passage transonic wind tunnel. International Journal of Heat and Mass Transfer, 2020, 162: 1-13
    [17] Song B, Gui X, Li S. Flow periodicity improvement in a high speed compressor cascade with a large turning-angle//AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit, 2002, 1(1): 3539-3546
    [18] Yakirevich E, Miezner R, Leizeronok B, et al. Continuous closed-loop transonic linear cascade for aerothermal performance studies in micro turbomachinery. Journal of Engineering for Gas Turbines and Power, 2018, 140(1): 1-9
    [19] Woodason R, Asghar A, Allan W . Assessment of the flow quality of a transonic turbine cascade//ASME Turbo Expo: Power for Land, Sea, & Air, 2009
    [20] Rona A, Gostelow JP. Performance margins of non-reflecting slotted walls in a transonic linear cascade tunnel//Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, 2006, 6(1): 1493-1502
    [21] 巩昊, 徐惊雷, 陈宇. 开槽尾流板对跨声速涡轮平面叶栅流场影响的试验. 航空动力学报, 2018, 33(12): 3048-3056 (Gong Hao, Xu Jinglei, Chen Yu. Experiment on effects of slotted tailboard on flow field of transonic turbine linear cascade. Journal of Aerospace Power, 2018, 33(12): 3048-3056 (in Chinese)

    Gong Hao, Xu Jinglei, Chen Yu. Experiment on effects of slotted tailboard on flow field of transonic turbine linear cascade. Journal of Aerospace Power, 2018, 33(12): 3048-3056(in Chinese))
    [22] Zhang Q, O'Dowd D, He L, et al. Overtip shock wave structure and its impact on turbine blade tip heat transfer. Journal of Turbomachinery, 2011, 133(4): 1-8
    [23] Mhetras S, Han J, Rudolph R. Effect of flow parameter variations on full coverage film-cooling effectiveness for a gas turbine blade//ASME Turbo Expo: Power for Land, Sea, & Air, 2007
    [24] Roy A, Jain S, Ekkad SV, et al. Heat transfer performance of a transonic turbine blade passage in presence of leakage flow through upstream slot and mateface gap with endwall contouring. American Society of Mechanical Engineers, 2014, 45721: V05BT13A048
    [25] 凌代军, 代秋林, 朱榕川等. 叶栅试验技术综述. 试验流体力学, 2021, 35(3): 30-38 (Ling Daijun, Dai Qiulin, Zhu Rongchuan, et al. Review of the cascade experimental technology. JournaI of Experiments in Fluid Mechanics, 2021, 35(3): 30-38 (in Chinese)

    Ling Daijun, Dai Qiulin, Zhu Rongchuan, et al. Review of the cascade experimental technology. JournaI of Experiments in Fluid Mechanics, 2021, 35(3): 30-38(in Chinese)
    [26] Ma H, Yan W, Tian Q. Influences of a kind of groove-blade on the flow field in a compressor cascade. Journal of Thermal Science, 2006, 15(3): 193-199 doi: 10.1007/s11630-006-0193-5
    [27] Tian Y, Ma H, Ma R. Stereoscopic PIV measurements of the flow field in a turbine cascade. Journal of Thermal Science, 2017, 26(1): 89-95 doi: 10.1007/s11630-017-0914-y
    [28] Ma H, Wang L. Experimental study of effects of tip geometry on the flow field in a turbine cascade passage. Journal of Thermal Science, 2015, 24(1): 1-9 doi: 10.1007/s11630-015-0748-4
    [29] Ma H, Jin C, Wei W. Experimental investigation of effects of suction side squealer tip on the aeroelastic stability of a linear oscillating compressor cascade. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2016, 231: 2120-2131
    [30] 林敬周, 解福田, 钟俊等. 高超声速风洞压敏漆试验技术. 航空学报, 2017, 38(7): 192-200 (Lin Jingzhou, Jie Futian, Zhong Jun, et al. Pressure sensitive paint test technique in hypersonic wind tunnel. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 192-200 (in Chinese)

    Lin Jingzhou, Jie Futian, Zhong Jun, et al. Pressure sensitive paint test technique in hypersonic wind tunnel. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 192-200. (in Chinese)
    [31] Xiang X, Yuan M, Yu J , et al. Fast response PSP measurement in a hypersonic wind tunnel//30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2014
    [32] Zhou Q, Liu B, Gao L, et al. Pressure measurement on suction surface of a single vane using pressure-sensitive paint. Chinese Journal of Aeronautics, 2009, 22(2): 138-144 doi: 10.1016/S1000-9361(08)60079-5
    [33] 高丽敏, 高杰, 王欢等. PSP技术在叶栅叶片表面压力测量中的应用. 工程热物理学报, 2011, 32(03): 411-414 (Gao Limin, Gao Jie, Wang Huan, et al. Application of PSP technique to pressure measurement on cascade surface. Journal of Engineering Thermophysics, 2011, 32(03): 411-414 (in Chinese)

    Gao Limin, Gao Jie, Wang Huan, et al. Application of PSP technique to pressure measurement on cascade surface. Journal of Engineering Thermophysics, 2011, 32(03): 411-414(in Chinese))
    [34] 曹传军. 叶尖间隙对微涡轮叶栅内流影响机理与叶尖逆向涡控研究. [博士论文]. 南京航空航天大学, 2011

    Cao Chuanjun. Influence of tip clearance on micro turbine cascade flow and research on backward vortex control of blade tip flow. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese))
    [35] Crafton J, Forlines A, Palluconi S, et al. Investigation of transverse jet injections in a supersonic crossflow using fast responding pressure-sensitive paint. Experiments in Fluids, 2015, 56(27): 1-15
    [36] 张雪, 衷洪杰, 王猛等. 跨声速叶栅叶片快速响应PSP测量研究. 空气动力学学报, 2019, 37(4): 586-592, 599

    Zhang Xue, Zhong Hong Jie, Wang Meng, et al. Fast response pressure-sensitive paint measurement of transonic cascades. Acta Aerodynamica Sinica, 2019, 37(4): 586-592, 599 (in Chinese)
    [37] Kim GM, Lee SI, Jeong JY, et al. An experimental study of the leakage flow effect on the film cooling effectiveness of a gas turbine shroud. Journal of Thermal Science and Engineering Applications, 2021, 13(6): 1-11
    [38] 于志强. 透平动叶气膜冷却的试验与数值研究. [博士论文]. 北京: 中国科学院大学, 2020

    Yu Zhiqiang. Experimental and numerical investigation of turbine blade film cooling performance. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese))
    [39] Jeong JY, Kim W, Kwak JS. Heat transfer coefficient and film cooling effectiveness on the partial cavity tip of a gas turbine blade. Journal of Turbomachinery, 2019, 141(7): 1-9
    [40] Yu Z, Li C, An B, et al. Experimental investigation of film cooling effectiveness on a gas turbine blade pressure surface with diffusion slot holes. Applied Thermal Engineering, 2020, 168(6): 1-13
    [41] Han JC, Rallabandi AP. Turbine blade film cooling using PSP technique. Frontiers in Heat Pipes, 2010, 1(1): 227-237
    [42] Gao Z, Narzary DP, Han JC. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes. International Journal of Heat and Mass Transfer, 2008, 51(9-10): 2139-2152 doi: 10.1016/j.ijheatmasstransfer.2007.11.010
    [43] Gao L, Yang G, Gao T, et al. Experimental investigation of a linear cascade with large solidity using pressure sensitive paint and dual-camera system. Journal of Thermal Science, 2021, 30(2): 682-695 doi: 10.1007/s11630-021-1425-4
    [44] Iijima Y, Sakaue H. Development of electroluminescence based pressure-sensitive paint. Review of Scientific Instruments, 2011, 82(1): 1-6
    [45] Matsuda Y, Ueno K, Yamaguchi H, et al. Organic electroluminescent sensor for pressure measurement. Sensors, 2012, 12(10): 13899-13906 doi: 10.3390/s121013899
    [46] Peng D, Chen J, Yu Y, et al. A novel laminated OLED–PSP system for measurement on moving surfaces. Journal of Visualization, 2018, 21(2): 215-223 doi: 10.1007/s12650-017-0458-y
    [47] Peng D, Zhong Z, Cai T. Integration of pressure-sensitive paint with persistent phosphor: A light-charged pressure-sensing system. Review of Scientific Instruments, 2018, 89(8): 1-8
    [48] Peng D, Zhong Z, Gu F, et al. Pressure-sensitive paint with imprinted pattern for full-field endoscopic measurement using a color camera. Sensors and Actuators A: Physical, 2019, 290(1): 28-35
    [49] 吴迪, 冯立好, 王晋军. 压敏漆测压在低速射流撞击壁面的应用研究. 力学学报, 2016, 48(2): 318-326 (Wu Di, Feng Lihao, Wang Jinjun. Study of pressure distribution of a fixed wall under low-speed jet impingement using pressure sensitive paint. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 318-326 (in Chinese) doi: 10.6052/0459-1879-15-277

    Wu Di, Feng Lihao, Wang Jinjun. Study of pressure distribution of a fixed wall under low-speed jet impingement using pressure sensitive paint. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 318-326. (in Chinese)) doi: 10.6052/0459-1879-15-277
    [50] Sakaue H, Sullivan J. Fast response time characteristics of anodized aluminum pressure sensitive paint//38th Aerospace Sciences Meeting and Exhibit, 2000: 506
    [51] Gregory JW, Sakaue H, Liu T, et al. Fast pressure-sensitive paints for flow and acoustic diagnostics. Annual Review of Fluid Mechanics, 2014, 46(1): 303-330 doi: 10.1146/annurev-fluid-010313-141304
    [52] Liu T, Sullivan JP. Pressure and Temperature Sensitive Paints. Berlin Heidelberg: Springer, 2005
    [53] Gregory JW, Asai K, Kameda M, et al. A review of pressure sensitive paint for high-speed and unsteady aerodynamics. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(2): 249-290 doi: 10.1243/09544100JAERO243
    [54] Ishiguro Y, Nagai H, Asai K, et al. Visualization of hypersonic compression corner flows using temperature and pressure-sensitive paints//AIAA Aerospace Sciences Meeting & Exhibit, 2011
    [55] Kwak JS, Han JC. Heat transfer coefficients on the squealer tip and near squealer tip regions of a gas turbine blade. Journal of Heat Transfer, 2002, 125(4): 778-787
    [56] Newton PJ, Lock GD, Krishnababu SK, et al. Heat transfer and aerodynamics of turbine blade tips in a linear cascade. Journal of Turbomachinery, 2006, 128(2): 300-309 doi: 10.1115/1.2137745
    [57] Ireland PT, Jones TV. Liquid crystal measurements of heat transfer and surface shear stress. Measurement Science & Technology, 2000, 11(7): 969-986
    [58] Newton PJ, Yan Y, Stevens NE, et al. Transient heat transfer measurements using thermochromic liquid crystal. Part 1: An improved technique. International Journal of Heat & Fluid Flow, 2003, 24(1): 14-22
    [59] Kingsley JR, Lock GD, Owen JM. Transient heat transfer measurements using thermochromic liquid crystal: lateral-conduction error. International Journal of Heat & Fluid Flow, 2005, 26(2): 256-263
    [60] Owen JM, Newton PJ, Lock GD. Transient heat transfer measurements using thermochromic liquid crystal. Part 2: Experimental uncertainties. International Journal of Heat & Fluid Flow, 2003, 24(1): 23-28
    [61] O’Dowd DO, Zhang Q, He L, et al. Comparison of heat transfer measurement techniques on a transonic turbine blade tip. Journal of Turbomachinery, 2011, 133(2): 1-10
    [62] Tao Z, Yao Y, Zhu P, et al. Experimental and numerical study on film cooling effectiveness of an annular cascade endwall with different slot configuration. International Journal of Thermal Sciences, 2020, 158: 1-17
    [63] Yao Y, Zhu P, Tao Z, et al. Experimental study on the effects of slot jet on film cooling performance in the cascade endwall with purge flow//ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019
    [64] Shi L, Ma H, Wang L. Analysis of different POD processing methods for SPIV-measurements in compressor cascade tip leakage Flow. Energies, 2019, 12(6): 1-25
    [65] Wang S, Hao S, Di J, et al. High-resolution measurement and analysis of the transient secondary flow field in a turbine cascade. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014, 228(7): 799-812 doi: 10.1177/0957650914539676
    [66] Pu J, Yu J, Wang J, et al. An experimental investigation of secondary flow characteristics in a linear turbine cascade with upstream converging slot-holes using TR-PIV. Experimental Thermal and Fluid Science, 2014, 59(1): 56-71
    [67] Wang J, Liu Y, Wang X, et al. Characteristics of tip leakage flow of the turbine blade with cutback squealer and coolant injection//ASME Turbo Expo: Power for Land, Sea, & Air, 2010
    [68] Hecklau M, Van Rennings R, Zander V, et al. Particle image velocimetry of active flow control on a compressor cascade. Experiments in Fluids, 2011, 50(4): 799-811 doi: 10.1007/s00348-010-0895-z
    [69] Krause N, Hringer K, Pap E. Time-resolved particle imaging velocimetry for the investigation of rotating stall in a radial pump. Experiments in Fluids, 2005, 39(2): 192-201 doi: 10.1007/s00348-005-0935-2
    [70] Chennaoui M, Angarita-Jaimes D, Ormsby MP, et al. Optimization and evaluation of fluorescent tracers for flare removal in gas-phase particle image velocimetry. Measurement Science and Technology, 2008, 19(11): 1-8
    [71] Tian Q, Simpson RL, Tang G. Flow visualization on the linear compressor cascade endwall using oil flows and laser Doppler anemometry. Measurement Science and Technology, 2004, 15(9): 1910-1916 doi: 10.1088/0957-0233/15/9/031
    [72] Key NL, Arts T. Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions. Journal of Turbomachinery, 2006, 128(2): 241-249
    [73] Lepicovsky J. Investigation of flow separation in a transonic-fan linear cascade using visualization methods. Experiments in Fluids, 2008, 44(6): 939-949 doi: 10.1007/s00348-007-0452-6
    [74] Hofer T, Arts T. Aerodynamic investigation of the tip leakage flow for blades with different tip squealer geometries at transonic conditions//ASME Turbo Expo: Power for Land, Sea, & Air. 2009
    [75] 李伟, 朱俊强, 李钢等. 基于表面热膜的超高负荷低压涡轮叶栅附面层特性. 航空动力学报, 2011, 26(1): 115-121 (Li Wei , Zhu Junqiang , Li Gang , et al. Experimental research on boundary layer behaviors of ultra-high-lift low-pressure turbine profile based on surface-mounted hot-film. Journal of Aerospace Power, 2011, 26(1): 115-121 (in Chinese))
    [76] 庄纯青, 刘火星. 热膜测试技术在涡轮叶栅边界层测量中的应用. 推进技术, 2014, 35(9): 1227-1233 (Zhuang Chunqing, Liu Huoxing. Boundary layer research of turbine blade based on surface hot-film technique. Journal of Propulsion Technology, 2014, 35(9): 1227-1233 (in Chinese)

    Zhuang Chunqing, Liu Huoxing. Boundary layer research of turbine blade based on surface hot-film technique. Journal of Propulsion Technology, 2014, 35(9): 1227-1233. (in Chinese))
    [77] Denos R, Arts T, Paniagua G, et al. Investigation of the unsteady rotor aerodynamics in a transonic turbine stage//Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000, 78545: V001T03A011
    [78] Schennach O, Pecnik R, Göttlich E, et al. The effect of vane clocking on the unsteady flowfield in a one and a half stage transonic turbine. ASME Turbo Expo, 2007, 1(1): 1-10
    [79] Clemens NT, Narayanaswamy V. Low-frequency unsteadiness of shock waveturbulent boundary layer interactions. Annual Review of Fluid Mechanics, 2014, 46(1): 469-492 doi: 10.1146/annurev-fluid-010313-141346
    [80] Flaszynski P, Doerffer P, Szwaba R, et al. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section. Journal of Thermal Science, 2015, 24(6): 510-515 doi: 10.1007/s11630-015-0816-9
    [81] Watanabe T, Azuma T, Uzawa S, et al. Unsteady pressure measurement on oscillating blade in transonic flow using fast-response pressure-sensitive paint. Journal of Turbomachinery, 2018, 140(6): 061003
    [82] Li SM, Chu TL, Yoo YS, et al. Transonic and low supersonic flow losses of two steam turbine blades at large incidences. Journal of Fluids Engineering, 2004, 126(6): 966-975 doi: 10.1115/1.1839927
    [83] Valdivia A, Yuceil KB, Wagner JL, et al. Control of supersonic inlet-isolator unstart using active and passive vortex generators. AIAA Journal, 2014, 52(6): 1207-1218 doi: 10.2514/1.J052214
    [84] 吴云, 李应红. 等离子体流动控制研究进展与展望. 航空学报, 2015, 36(2): 381-405 (Wu Yun, Li Yinghong. Progress and outlook of plasma flow control. Acta Aeronautica Et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese)

    Wu Yun, Li Yinghong. Progress and outlook of plasma flow control. Acta Aeronautica Et Astronautica Sinica, 2015, 36(2): 381-405. (in Chinese))
    [85] 张鑫, 黄勇, 李华星. 等离子体激励器控制圆柱绕流的实验研究. 力学学报, 2018, 50(6): 1396-1405 (Zhang Xin, Huang Yong, Li Huaxing. Flow control over a circular cylinder using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1396-1405 (in Chinese) doi: 10.6052/0459-1879-18-279

    Zhang Xin, Huang Yong, Li Huaxing. Flow control over a circular cylinder using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1396-1405 (in Chinese)) doi: 10.6052/0459-1879-18-279
    [86] Panaras AG, Lu FK. Micro-vortex generators for shock wave boundary layer interactions. Progress in Aerospace Sciences, 2015, 74: 16-47
    [87] Lei X, Qi M, Sun H, et al. Investigation on the shock control using grooved surface in a linear turbine nozzle. Journal of Turbomachinery, 2017, 139(12): 1-12
    [88] Zhao B, Qi M, Sun H, et al. A Comprehensive analysis on the structure of groove-induced shock waves in a linear turbine. Aerospace Science and Technology, 2019, 87: 331-339
    [89] 田杨涛. 非均匀叶顶间隙对涡轮性能及尖区非定常流动的影响. [博士论文]. 北京: 北京航空航天大学, 2018

    Tian Yangtao. Investigation of the non-uniform tip geometry on the performance and unsteady flow field inside the turbine passage. [PhD Thesis]. Beijing: Beihang University, 2018 (in Chinese))
    [90] Bunker, Ronald S. Axial turbine blade tips: function, design, and durability. Journal of Propulsion & Power, 2006, 22(2): 271-285
    [91] Sunden, Bengt, Xie G. Gas turbine blade tip heat transfer and cooling: A literature survey. Heat Transfer Engineering, 2010, 31(7): 527-554 doi: 10.1080/01457630903425320
    [92] Zhang Q, He L. Overtip choking and its implications on turbine blade-tip aerodynamic performance. Journal of Propulsion and Power, 2011, 27(5): 1008-1014 doi: 10.2514/1.B34112
    [93] Cheng F, Zhang J, Chang H, et al. Investigations of film-cooling effectiveness on the squealer tip with various film-hole configurations in a linear cascade. International Journal of Heat and Mass Transfer, 2018, 117(2): 344-357
    [94] Du J, Lin F, Chen J, et al. Flow structures in the tip region for a transonic compressor rotor. Journal of Turbomachinery, 2013, 135(3): 1-11
    [95] 杨晰琼, 刘波, 曹志远等. 跨声速风扇转子间隙流动结构分析. 航空动力学报, 2016, 31(9): 2258-2267 (Yang Xiqiong, Liu Bo, Cao Zhiyuan, et al. Analysis on tip flow structure in transonic fan rotor. Journal of Aerospace Power, 2016, 31(9): 2258-2287 (in Chinese))
    [96] Vo HD, Tan CS, Greitzer EM. Criteria for spike initiated rotating stall. Journal of Turbomachinery, 2008, 130(1): 011023
    [97] Anto K, Xue S, Ng WF, et al. Effects of tip clearance gap and exit Mach number on turbine blade tip and near-tip heat transfer//Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2013, 55164: V03 CT14 A005
    [98] Wheeler A, Saleh Z. Effect of cooling injection on transonic tip flows. Journal of Propulsion and Power, 2013, 29(6): 1374-1381 doi: 10.2514/1.B34657
    [99] Couch E, Christophel J, Hohlfeld E, et al. Comparison of measurements and predictions for blowing from a turbine blade tip. Journal of Propulsion & Power, 2005, 21(2): 335-343
    [100] Christophel JR, Couch E, Thole KA, et al. Measured adiabatic effectiveness and heat transfer for blowing from the tip of a turbine blade. Journal of Turbomachinery, 2005, 127(2): 251-262 doi: 10.1115/1.1811095
    [101] Hamik M, Willinger R. An innovative passive tip leakage control method for axial turbines: Basic concept and performance potential. Journal of Thermal Science, 2007, 16(3): 215-222 doi: 10.1007/s11630-007-0215-y
    [102] Hu J, Kong X, Li Z, et al. Experimental investigation of aerodynamic interaction between tip leakage flow and spontaneous tip injection flow using 2D-PIV. Experimental Thermal and Fluid Science, 2014, 54(1): 127-135
    [103] Niu M, Zang S. Parametric study of tip cooling injection in an axial turbine cascade: Influences of injection circumferential angle. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power & Energy, 2010, 224(1): 109-118
    [104] Niu M, Zang S. Experimental and numerical investigations of tip injection on tip clearance flow in an axial turbine cascade. Experimental Thermal and Fluid Science, 2011, 35(6): 1214-1222 doi: 10.1016/j.expthermflusci.2011.04.009
    [105] 崔涛, 陈绍文, 周治华等. 深凹槽式涡轮叶顶间隙泄漏直列叶栅试验研究. 工程热物理学报, 2015, 36(9): 1902-1906 (Cui Tao, Chen Shaowen, Zhou Zhihua, et al. Experiment research on deep double squealer tip clearance leakage flow in linear turbine cascade. Journal of Engineering Thermophysics, 2015, 36(9): 1902-1906 (in Chinese)

    Cui Tao, Chen Shaowen, Zhou Zhihua, et al. Experiment research on deep double squealer tip clearance leakage flow in linear turbine cascade. Journal of Engineering Thermophysics, 2015, 36(9): 1902-1906 (in Chinese))
    [106] Lee SE, Lee SW, KWak HS. Tip leakage aerodynamics over stepped squealer tips in a turbine cascade. Experimental Thermal and Fluid Science, 2011, 35(1): 135-145 doi: 10.1016/j.expthermflusci.2010.08.014
    [107] Mischo B, Behr T, Abhari RS. Flow physics and profiling of recessed blade tips: impact on performance and heat load. Journal of Turbomachinery, 2008, 130(2): 1-8
    [108] Ghandour M, Mori K, Nakamura Y. Desensitization of tip clearance effects in axial flow turbines. Journal of Fluid Science and Technology, 2010, 5(2): 317-330 doi: 10.1299/jfst.5.317
    [109] Nho YC, Park JS, Yong JL, et al. Effects of turbine blade tip shape on total pressure loss and secondary flow of a linear turbine cascade. International Journal of Heat & Fluid Flow, 2012, 33(1): 92-100
    [110] Fu Y, Chen F, Liu H, et al. Experimental and numerical study of honeycomb tip on suppressing tip leakage flow in turbine cascade. Journal of Turbomachinery, 2018, 140(6): 061006
    [111] 付云峰. 蜂窝叶顶结构控制涡轮叶栅叶尖泄漏流动的机理研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2020

    Fu Yunfeng. Mechanism investigation of the tip leakage flow in turbine cascade controlled by the honeycomb tip. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2020 (in Chinese))
    [112] Schabowski Z, Hodson H, Giacche D, et al. Aeromechanical optimization of a winglet-squealer tip for an axial turbine. Journal of Turbomachinery, 2014, 136(7): 1-12
    [113] Schabowski Z, Hodson H. The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers. Journal of Turbomachinery, 2014, 136(4): 1-11
    [114] 高杰, 郑群, 岳国强等. 燃气轮机涡轮叶顶间隙气热技术研究进展. 航空学报, 2017, 38(9): 76-106 (Gao Jie, Zheng Qun, Yue Guoqiang, et al. Research progress on turbine blade tip aerodynamics and heat transfer technology for gas turbines. Acta Aeronautica Et Astronautica Sinica, 2017, 38(9): 76-106 (in Chinese)

    Gao Jie, Zheng Qun , Yue Guoqiang, et al. Research progress on turbine blade tip aerodynamics and heat transfer technology for gas turbines. Acta Aeronautica Et Astronautica Sinica, 2017, 38(9) 76-106. (in Chinese)
    [115] Corriveau D, Sjolander SA. Influence of loading distribution on the off-design performance of high-pressure turbine blades. Journal of Turbomachinery, 2007, 129(3): 563-571 doi: 10.1115/1.2464145
    [116] Yasa T, Paniagua G, Bussolin A. Performance analysis of a transonic high-pressure turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(6): 769-778 doi: 10.1243/09576509JPE467
    [117] Corriveau D. Influence of loading distribution on the performance of high pressure turbine blades. [PhD Thesis]. Canada: Carleton University, 2005
    [118] Jouini D, Sjolander SA, Moustapha SH. Midspan flow-field measurements for two transonic linear turbine cascades at off-design conditions. Journal of Turbomachinery, 2002, 124(2): 176-186 doi: 10.1115/1.1458576
    [119] Zhao W, Luo W, Zhao Q, et al. Investigation on the reduction of trailing edge shock losses for a highly loaded transonic turbine//ASME Turbo Expo: Turbomachinery Technical Conference & Exposition, 2016
    [120] Breugelmans FAH, Carels Y, Demuth M. Influence of dihedral on the secondary flow in a two-dimensional compressor cascade. Journal of Engineering for Gas Turbines and Power, 1984, 106(3): 578-584 doi: 10.1115/1.3239609
    [121] Zhao G, Chen F, Song Y, et al. Experimental study on the aerodynamic performance of swept curved blade. Chinese Journal of Aeronautics, 2004, 17(3): 136-141 doi: 10.1016/S1000-9361(11)60227-6
    [122] 凌敬, 杜鑫, 王松涛等. 平面扩压叶栅最佳弯叶片生成线与叶栅折转角的关系. 航空动力学报, 2015, 30(4): 875-882 (Ling Jing, Du Xin, Wang Songtao, et al. Relationship between optimum curved blade generate line and blade camber angle in linear compressor cascade. Journal of Mechanical Engineering, 2015, 30(4): 875-882 (in Chinese))
    [123] Sonoda T, Arima T, Olhofer M, et al. A study of advanced high loaded transonic turbine airfoils. Journal of Turbomachinery, 2004, 128(4): 1275-1283
    [124] Ma H, Jiang H, Qiu Y. Visualizations of the unsteady flow field near the endwall of a turbine cascade//ASME Turbo Expo: Power for Land, Sea, & Air, 2002: 233-240
    [125] 刘昊. 考虑缘板间隙下非轴对称端壁的试验和数值研究. [博士论文]. 上海: 上海交通大学, 2018

    Liu Hao. Experimental and numerical study of nonaxisymmetric endwalls considering the midgap. [PhD Thesis]. Shanghai: Shanghai Jiaotong University, 2018 (in Chinese))
    [126] Kan X, Wang S, Yang L, et al. Vortex dynamic mechanism of curved blade affecting flow loss in compressor cascade during corner stall process. Aerospace Science and Technology, 2019, 85(1): 443-452
    [127] Wang H, Olson SJ, Goldstein RJ, et al. Flow visualization in a linear turbine cascade of high performance turbine blades. Journal of Turbomachinery, 1997, 119(1): 1-8 doi: 10.1115/1.2841006
    [128] Langston LS. Secondary flows in axial turbines-a review. Annals of the New York Academy of Sciences, 2006, 934(1): 11-26 doi: 10.1111/j.1749-6632.2001.tb05839.x
    [129] Lampart P. Investigation of endwall flows and losses in axial turbines. Part I: Formation of endwall flows and losses. Journal of Theoretical and Applied Mechanics, 2009, 47(2): 321-342
    [130] 钟兢军, 阚晓旭. 高负荷压气机叶栅内三维旋涡结构及其形成机理的研究进展. 推进技术, 2020, 41(279): 1946-1957 (Zhong Jinjun, Kan Xiaoxu. Research progress on three-dimensional vortex structures and formation mechanism of high-loaded compressor cascades. Journal of Propulsion Technology, 2020, 41(279): 1946-1957 (in Chinese)

    Zhong Jinjun, Kanxiaoxu. Research progress on three-dimensional vortex structures and formation mechanism of high-loaded compressor cascades. Journal of Propulsion Technology, 2020, 41(279): 1946-1957 (in Chinese))
    [131] 张华, 吕志咏, 孙盛东. 应用PIV对角区非定常马蹄涡结构的实验研究. 力学学报, 2008, 40(2): 171-178 (Zhang Hua, Lu Zhiyong, Sun Shengdong. The experimental study on unsteady horseshoe vortex structure in juncture flow with PIV. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 171-178 (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.02.004

    Zhang Hua, Lu Zhiyong, Sun Shengdong. The experimental study on unsteady horseshoe vortex structure in juncture flow with PIV. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 171-178 (in Chinese)) doi: 10.3321/j.issn:0459-1879.2008.02.004
    [132] Cattafesta L, Sheplak M. Actuators for active flow control. Annual Review of Fluid Mechanics, 2011, 43(1): 247-272 doi: 10.1146/annurev-fluid-122109-160634
    [133] Gbadebo SA, Cumpsty NA, Hynes TP. Control of three dimensional separations in axial compressors by tailored boundary layer suction. Journal of Turbomachinery, 2008, 130(1): 011004
    [134] Liang T, Liu B, Spence S. Effect of boundary layer suction on the corner separation in a highly loaded axial compressor cascade. Journal of Turbomachinery, 2021, 143(6): 1-11
    [135] Cao Z, Liu B, Zhang T. Control of separations in a highly loaded diffusion cascade by tailored boundary layer suction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(8): 1363-1374 doi: 10.1177/0954406213508281
    [136] Nerger D, Saathoff H, Radespiel R, et al. Experimental investigation of endwall and suction side blowing in a highly loaded compressor stator cascade//Turbo Expo: Power for Land, Sea, and Air, 2010, 44021: 255-267
    [137] Zander V, Nitsche W. Control of secondary flow structures on a highly loaded compressor cascade. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2013, 227(6): 674-682 doi: 10.1177/0957650913495538
    [138] Gmelin C, Zander V, Hecklau M, et al. Active flow control concepts on a highly loaded subsonic compressor cascade: Resume of experimental and numerical results//Turbo Expo: Power for Land, Sea, and Air, 2011, 54679: 393-404
    [139] Jutur P, Govardhan RN. Flutter in started and unstarted transonic linear cascades: simultaneous measurements of unsteady loads and shock dynamics. Journal of Turbomachinery, 2019, 141(12): 1-25
    [140] Verdon JM. Review of unsteady aerodynamic methods for turbomachinery aeroelastic and aeroacoustic applications. AIAA Journal, 1995, 31(2): 235-250
    [141] Srinivasan AV. Flutter and resonant vibration characteristics of engine blades. Journal of Engineering for Gas Turbines & Power, 1997, 119(4): 742-775
    [142] Ma H, Jin C, Wei W. Experimental investigation of effects of suction side squealer tip on the aeroelastic stability of a linear oscillating compressor cascade. Journal of Aerospace Engineering, 2016, 231(11): 2120-2131
    [143] Shi L, Ma H, Yu X. POD analysis of the unsteady behavior of blade wake under the influence of laminar separation vortex shedding in a compressor cascade. Aerospace Science and Technology, 2020, 105(10): 1-15
    [144] Keerthi MC, Kushari A. Experimental study of aerodynamic damping of an annular compressor cascade with large mean incidences. Journal of Turbomachinery, 2019, 141(6): 1-17
    [145] Belz J, Hennings H, Kahl G. Experimental investigation of the forcing function and forced pitching blade oscillations of an annular compressor cascade in transonic flow//ASME Turbo Expo-gas Turbine Technical Congress & Exposition, DLR, 2010
    [146] Yang H, He L. Experimental study on linear compressor cascade with three-dimensional blade oscillation. Journal of Propulsion & Power, 2004, 20(1): 180-188
    [147] Merienne MC, Molton P, Bur R, et al. Pressure-sensitive paint application to an oscillating shock wave in a transonic flow. AIAA Journal, 2015, 52(11): 1-13
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  32
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-26
  • 录用日期:  2022-04-21
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回