EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海采矿系统中悬臂式立管涡激振动分析

金国庆 邹丽 宗智 孙哲 王浩

金国庆, 邹丽, 宗智, 孙哲, 王浩. 深海采矿系统中悬臂式立管涡激振动分析. 力学学报, 2022, 54(6): 1741-1754 doi: 10.6052/0459-1879-21-679
引用本文: 金国庆, 邹丽, 宗智, 孙哲, 王浩. 深海采矿系统中悬臂式立管涡激振动分析. 力学学报, 2022, 54(6): 1741-1754 doi: 10.6052/0459-1879-21-679
Jin Guoqing, Zou Li, Zong Zhi, Sun Zhe, Wang Hao. Analysis of vortex-induced vibration for a cantilever riser in a deep-sea mining system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1741-1754 doi: 10.6052/0459-1879-21-679
Citation: Jin Guoqing, Zou Li, Zong Zhi, Sun Zhe, Wang Hao. Analysis of vortex-induced vibration for a cantilever riser in a deep-sea mining system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1741-1754 doi: 10.6052/0459-1879-21-679

深海采矿系统中悬臂式立管涡激振动分析

doi: 10.6052/0459-1879-21-679
基金项目: 国家自然科学基金(52071056, 52171295)和基本科研业务专项(DUT20GF107)资助项目
详细信息
    作者简介:

    邹丽, 教授, 主要研究方向: 船舶与海洋工程高端装备、海洋工程环境、非线性水动力学. E-mail: lizou@dlut.edu.cn

  • 中图分类号: P751

ANALYSIS OF VORTEX-INDUCED VIBRATION FOR A CANTILEVER RISER IN A DEEP-SEA MINING SYSTEM

  • 摘要: 不同于传统的海洋立管, 深海采矿系统中的垂直提升管道可以被视为一个底部无约束的柔性悬臂式立管, 工作过程中同样面临涡激振动和柔性变形问题. 本文采用一种无网格离散涡方法和有限元耦合的准三维时域求解数值模型, 系统性地研究了不同流速下悬臂式立管的涡激振动问题. 结果表明: 悬臂式立管的横向振动模态阶数随折合速度增加而增大, 在一定折合速度范围内主导振动模态保持不变; 当主导模态转变时, 对应的横向振幅会发生突降, 但是当新的高阶模态被激发后, 立管振幅随来流速度增加而再次逐渐增大; 在相同的振动模态下, 立管底部位移均方根值随折合速度线性增加, 主导振动频率在模态转变时会出现跳跃现象; 特别地, 本文讨论了三阶主导模态下悬臂式立管的振动响应, 无约束的立管底部呈现出较大的振动能量, 且振幅的驻波特征随折合速度增加而逐渐增强; 本文比较了两端铰支立管与悬臂式立管的涡激振动响应特征, 两者在振幅和主导振动频率两方面均表现出了相同的变化趋势.

     

  • 图  1  深海采矿系统示意图

    Figure  1.  Sketch of the deep-sea mining system

    图  2  垂直提升管道简化模型

    Figure  2.  Simplified model of the vertical lifting pipeline

    图  3  不同单元数立管的横向位移均方根值

    Figure  3.  RMS amplitudes of the transverse displacements for the riser models with various element numbers

    图  4  不同流速下的柔性立管横向振动响应((a), (c)振动位移包络线; (b), (d)位移均方根值)

    Figure  4.  Vibration response envelopes of a flexible riser under different current speeds ((a), (c) vibration amplitude envelopes; (b), (d) RMS displacements)

    图  5  悬臂式立管前8阶固有频率和振型

    Figure  5.  First eight-order natural frequencies and modal shapes for a cantilever riser

    图  6  不同折合速度下的横向振幅均方根值

    Figure  6.  RMS vibration amplitudes in the transverse direction under a wide range of reduced velocities

    图  7  不同折合速度下的柔性立管横向振动响应 ((a)~(d)位移均方根值; (e)~(h)振动位移包络线)

    Figure  7.  Vibration response envelopes of a flexible riser under different reduced velocities ((a)~(d) RMS amplitudes; (e)~(h) vibration amplitude envelopes)

    图  8  立管底部横向位移均方根值

    Figure  8.  RMS amplitude of the transverse displacement at the bottom for the riser

    图  9  横向振动的主导频率比

    Figure  9.  Dominant frequency ratio of the transverse vibration

    图  10  立管横向振动频率空间分布 ((a)~(g) ${U_r}$ = 24~36)

    Figure  10.  Spatial distribution of transverse vibration frequency for the riser ((a)~(g) ${U_r}$ = 24~36)

    11  立管泄涡频率空间分布 ((a)~(g) ${U_r}$ = 24~36)

    11.  Spatial distribution of vortex shedding frequency for the riser ((a)~(g) ${U_r}$ = 24~36)

    11  立管泄涡频率空间分布 ((a)~(g) ${U_r}$ = 24~36) (续)

    11.  Spatial distribution of vortex shedding frequency for the riser ((a)~(g) ${U_r}$ = 24~36) (continued)

    图  12  立管不同位置的振幅时空演化 ((a)~(g) ${U_r}$ = 24~36)

    Figure  12.  Temporal-spatial evolution of transverse vibration amplitude along the riser span ((a)~(g) ${U_r}$ = 24~36)

    图  13  瞬态涡量场 ((a)~(d) ${U_r}$ = 24~30)

    Figure  13.  Instantaneous vorticity field ((a)~(d) ${U_r}$ = 24~36)

    图  14  两端铰支立管前8阶固有频率和振型

    Figure  14.  First eight-order natural frequencies and modal shapes for a riser hinged at both ends

    图  15  沿立管展向最大的横向位移均方根值

    Figure  15.  Maximum RMS amplitude of the transverse displacement along the riser span

    图  16  立管横向振动的主导频率比

    Figure  16.  Dominant frequency ratio of the transverse vibration for the riser

    图  17  立管不同位置的振幅时空演化 ((a)~(c) ${U_r}$ = 16~20)

    Figure  17.  Temporal-spatial evolution of transverse vibration amplitude along the riser span ((a)~(c) ${U_r}$ = 16~20)

    表  1  柔性立管参数[32,41]

    Table  1.   Parameters of a flexible riser[32,41]

    ParametersValuesUnits
    length $L$ 9.63 m
    external diameter $D$ 0.02 m
    internal diameter $d$ 0.0191 m
    mass per unit length $m$ 0.7 kg
    mass ratio ${m^*}$ 2.23
    aspect ratio $L/D$ 481.5
    Young modulus $ E $ 102.5 GPa
    top tension ${T_{{\rm{top}}} }$ 817 N
    structural damping ratio $\xi $ 0.003
    current speed ${u_\infty }$ 0.42, 0.84 m/s
    Reynolds number $Re$ 8400, 16800
    fluid density $ \rho $ 1000 kg/m3
    kinematic viscosity $\nu $ 1 × 10−6 m2/s
    下载: 导出CSV
  • [1] 阳宁, 陈光国. 深海矿产资源开采技术的现状综述. 矿山机械, 2010, 38(10): 4-9 (Yang Ning, Cheng Guangguo. Status quo and development trendency of deep sea minerals mining technology. Mining &Processing Equipment, 2010, 38(10): 4-9 (in Chinese)

    Yang Ning, Cheng Guangguo. Status quo and development trendency of deep sea minerals mining technology. Mining & Processing Equipment, 2010, 38(10): 4-9 (in Chinese)
    [2] Sharma R. Deep-Sea Mining: Current Status and Future Considerations. Cham: Springer International Publishing, 2017: 3-21
    [3] 刘少军, 刘畅, 戴瑜. 深海采矿装备研发的现状与进展. 机械工程学报, 2014, 50(2): 8-18 (Liu Shaojun, Liu Chang, Dai Yu. Status and progress on researches and developments of deep ocean mining equipments. Journal of Mechanical Engineering, 2014, 50(2): 8-18 (in Chinese) doi: 10.3901/JME.2014.02.008

    Liu Shaojun, Liu Chang, Dai Yu. Status and progress on researches and developments of deep ocean mining equipments. Journal of Mechanical Engineering, 2014, 50(02): 8-18 (in Chinese) doi: 10.3901/JME.2014.02.008
    [4] 阳宁, 夏建新. 国际海底资源开发技术及其发展趋势. 矿冶工程, 2000, 20(1): 1-4 (Yang Ning, Xia Jianxin. Development techniques for international sea-floor resources and their future trend. Mining and Metallurgical Engineering, 2000, 20(1): 1-4 (in Chinese) doi: 10.3969/j.issn.0253-6099.2000.01.001

    Yang Ning, Xia Jianxin. Development techniques for international sea-floor resources and their future trend. Mining and Metallurgical Engineering, 2000, 20(01): 1-4 (in Chinese) doi: 10.3969/j.issn.0253-6099.2000.01.001
    [5] Leng DX, Shao S, Xie YC, et al. A brief review of recent progress on deep sea mining vehicle. Ocean Engineering, 2021, 228: 108565 doi: 10.1016/j.oceaneng.2020.108565
    [6] Chen W, Xu HL, Peng N, et al. Linkage characteristics of deep-sea mining lifting system. Ocean Engineering, 2021, 233: 109074 doi: 10.1016/j.oceaneng.2021.109074
    [7] Xu HL. Research on the pump–vessel combined ore lifting equipment for deep-sea rigid pipe mining system. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(1): 011010 doi: 10.1115/1.2427070
    [8] Yang HL, Liu SJ. Heave compensation system of lifting pipeline for deep-sea mining based on combined action of vibration absorber and accumulator. Marine Georesources & Geotechnology, 2019, 37(3): 393-401
    [9] Wu Q, Yang JM, Lu HN, et al. Effects of heave motion on the dynamic performance of vertical transport system for deep sea mining. Applied Ocean Research, 2020, 101: 102188 doi: 10.1016/j.apor.2020.102188
    [10] Patel MH, Jesudasen AS. Theory and model tests for the dynamic response of free hanging risers. Journal of Sound and Vibration, 1987, 112(1): 149-166 doi: 10.1016/S0022-460X(87)80099-8
    [11] Mao LJ, Zeng S, Liu QY. Dynamic mechanical behavior analysis of deep water drilling riser under hard hang-off evacuation conditions. Ocean Engineering, 2019, 183: 318-331 doi: 10.1016/j.oceaneng.2019.05.014
    [12] Mao LJ, Zeng S, Liu QY, et al. Dynamical mechanics behavior and safety analysis of deep water riser considering the normal drilling condition and hang-off condition. Ocean Engineering, 2020, 199: 106996 doi: 10.1016/j.oceaneng.2020.106996
    [13] Wang YB, Gao DL, Fang J. Study on lateral vibration analysis of marine riser in installation-via variational approach. Journal of Natural Gas Science and Engineering, 2015, 22: 523-529 doi: 10.1016/j.jngse.2014.12.012
    [14] Wang YB, Gao DL, Fang J. Mechanical behavior analysis for the determination of riser installation window in offshore drilling. Journal of Natural Gas Science and Engineering, 2015, 24: 317-323 doi: 10.1016/j.jngse.2015.03.044
    [15] Fan HH, Li CW, Wang ZM, et al. Dynamic analysis of a hang-off drilling riser considering internal solitary wave and vessel motion. Journal of Natural Gas Science and Engineering, 2017, 37: 512-522 doi: 10.1016/j.jngse.2016.12.003
    [16] Chaplin JR, Bearman PW, Huera Huarte FJ, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and Structures, 2005, 21(1): 3-24 doi: 10.1016/j.jfluidstructs.2005.04.010
    [17] Trim AD, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers. Journal of Fluids and Structures, 2005, 21(3): 335-361 doi: 10.1016/j.jfluidstructs.2005.07.014
    [18] Song LJ, Fu SX, Cao J, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. Journal of Fluids and Structures, 2016, 63: 325-350 doi: 10.1016/j.jfluidstructs.2016.03.006
    [19] 宋磊建, 付世晓, 于大鹏等. 剪切流下发生涡激振动的柔性立管阻力特性研究. 力学学报, 2016, 48(2): 300-306 (Song Leijian, Fu Shixiao, Yu Dapeng, et al. Investigation of drag forces for flexible risers undergoing vortex-induced vibration in sheared flow. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 300-306 (in Chinese) doi: 10.6052/0459-1879-15-309

    Song Leijian, Fu Shixiao, Yu Dapeng et al. Investigation of drag forces for flexible risers undergoing vortex-induced vibration in sheared flow. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 300–306 (in Chinese) doi: 10.6052/0459-1879-15-309
    [20] 高云, 刘黎明, 付世晓等. 柔性立管涡激振动响应轨迹特性研究. 船舶力学, 2017, 21(5): 563-575 (Gao Yun, Liu Liming, Fu Shixiao et al. Study of the trajectory performance on the vortex-induced vibration response of a flexible riser. Journal of Ship Mechanics, 2017, 21(5): 563-575 (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.05.007

    Gao Yun, Liu Liming, Fu Shixiao et al. Study of the trajectory performance on the vortex-induced vibration response of a flexible riser. Journal of Ship Mechanics, 2017, 21(05): 563–575 (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.05.007
    [21] 王俊高, 付世晓, 许玉旺等. 正弦振荡来流下柔性立管涡激振动发展过程. 力学学报, 2014, 46(2): 173-182 (Wang Jungao, Fu Shixiao, Xu Yuwang, et al. VIV developing process of a flexible cylinder under oscillatory flow. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 173-182 (in Chinese) doi: 10.6052/0459-1879-13-277

    Wang Jungao, Fu Shixiao, Xu Yuwang et al. VIV developing process of a flexible cylinder under oscillatory flow. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 173–182 (in Chinese) doi: 10.6052/0459-1879-13-277
    [22] 徐万海, 马烨璇, 罗浩等. 柔性圆柱涡激振动流体力系数识别及其特性. 力学学报, 2017, 49(4): 818-827 (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818-827 (in Chinese) doi: 10.6052/0459-1879-16-263

    Xu Wanhai, Ma Yexuan, Luo Hao et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818–827 (in Chinese) doi: 10.6052/0459-1879-16-263
    [23] Fujarra ALC, Pesce CP, Flemming F, et al. Vortex-induced vibration of a flexible cantilever. Journal of Fluids and Structures, 2001, 15(3): 651-658
    [24] Wang JG, Xiang S, Fu SX, et al. Experimental investigation on the dynamic responses of a free-hanging water intake riser under vessel motion. Marine Structures, 2016, 50: 1-19 doi: 10.1016/j.marstruc.2016.06.003
    [25] Mao LJ, Zeng S, Liu QY. Experimental investigation on vortex-induced vibrations of a hang-off evacuated drilling riser. Nonlinear Dynamics, 2020, 102(3): 1499-1516 doi: 10.1007/s11071-020-06044-0
    [26] Pan ZY, Cui WC, Zhang XC. Overview on VIV of slender marine structures. Journal of Ship Mechanics, 2005, 9(6): 135-154
    [27] Bishop RED, Hassan AY. The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 277(1368): 51-75
    [28] 高云, 邹丽, 宗智. 两端铰接的细长柔性圆柱体涡激振动响应特性数值研究. 力学学报, 2018, 50(1): 9-20 (Gao Yun, Zou Li, Zong Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9-20 (in Chinese) doi: 10.6052/0459-1879-17-340

    Gao Yun, Zou Li, Zong Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9–20 (in Chinese) doi: 10.6052/0459-1879-17-340
    [29] 宋芳, 凌国灿, 林黎明. 圆柱涡激振动的结构-尾流振子耦合模型研究. 力学学报, 2010, 42(3): 357-365 (Song Fang, Ling Liming, Ling Guocan. The study of vortex-induced vibrations by computation using coupling model of structures and wake oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 357-365 (in Chinese) doi: 10.6052/0459-1879-2010-3-2009-147

    Song Fang, Ling Liming, Ling Guocan. The study of vortex-induced vibrations by computation using coupling model of structures and wake oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 357–365 (in Chinese) doi: 10.6052/0459-1879-2010-3-2009-147
    [30] 段金龙, 周济福, 王旭等. 剪切流场中含内流立管横向涡激振动特性. 力学学报, 2021, 53(7): 1876-1884 (Duan Jinlong, Zhou Jifu, Wang Xu. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876-1884 (in Chinese) doi: 10.6052/0459-1879-21-171

    Duan Jinlong, Zhou Jifu, Wang Xu. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876–1884 (in Chinese) doi: 10.6052/0459-1879-21-171
    [31] Yamamoto CT, Meneghini JR, Saltara F, et al. Numerical simulations of vortex-induced vibration on flexible cylinders. Journal of Fluids and Structures, 2004, 19(4): 467-489 doi: 10.1016/j.jfluidstructs.2004.01.004
    [32] Lin K, Wang JS. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method. Ocean Engineering, 2019, 172: 468-486 doi: 10.1016/j.oceaneng.2018.12.006
    [33] Duanmu Y, Zou L, Wan DC. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratios in uniform and shear currents. Journal of Hydrodynamics, 2017, 29(6): 1010-1022 doi: 10.1016/S1001-6058(16)60815-6
    [34] Huang ZY, Deng ZZ, Liu DH, et al. Numerical simulation for VIV of a long flexible cylinder in the time domain. Ships and Offshore Structures, 2018, 13(sup1): 214-227 doi: 10.1080/17445302.2018.1438067
    [35] Fan DX, Wang ZC, Triantafyllou MS, et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow. Journal of Fluid Mechanics, 2019, 881: 815-858 doi: 10.1017/jfm.2019.738
    [36] Bourguet R, Karniadakis GE, Triantafyllou MS. Phasing mechanisms between the in-line and cross-flow vortex-induced vibrations of a long tensioned beam in shear flow. Computers & Structures, 2013, 122: 155-163
    [37] Evangelinos C, Lucor D, Karniadakis GE. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration. Journal of Fluids and Structures, 2000, 14(3): 429-440 doi: 10.1006/jfls.1999.0278
    [38] Chorin AJ. Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 1973, 57(4): 785-796 doi: 10.1017/S0022112073002016
    [39] Chaplin JR, Bearman PW, Cheng Y, et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids and Structures, 2005, 21(1): 25-40 doi: 10.1016/j.jfluidstructs.2005.05.016
    [40] Lin K, Wang JS, Fan DX, et al. Flow-induced cross-flow vibrations of long flexible cylinder with an upstream wake interference. Physics of Fluids, 2021, 33(6): 065104 doi: 10.1063/5.0053826
    [41] Lehn E. VIV Suppression Tests on High L/D Flexible Cylinders. Trondheim, Norway: Norwegian Marine Technology Research Institute, 2003
    [42] Spalart PR, Leonard A, Baganoff D. Numerical simulation of separated flows. NASA Technical Memorandum 84328, Washington, DC: NASA, 1983
    [43] 陈伟. 涡激振动的离散涡数值模拟. [硕士论文]. 大连: 大连理工大学, 2009

    Chen Wei. Numerical simulation of vortex-induced vibration using discrete vortex method. [Master Thesis]. Dalian: Dalian University of Technology, 2009 (in Chinese)
    [44] Jin GQ, Zou L, Jiang YC, et al. A circle theorem technique to handle 2-D flows around arbitrary cylinders in discrete vortex method. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 209: 104496 doi: 10.1016/j.jweia.2020.104496
    [45] Pang JH, Zong Z, Zou L, et al. A novel vortex scheme with instantaneous vorticity conserved boundary conditions. European Journal of Mechanics B/Fluids, 2016, 59: 219-228 doi: 10.1016/j.euromechflu.2015.12.010
    [46] 张亚辉, 林家浩. 结构动力学基础. 大连: 大连理工大学出版社, 2007

    Zhang Yahui, Lin Jiahao. Fundamentals of Structural Dynamics. Dalian: Dalian University of Technology Press, 2007 (in Chinese)
    [47] 雷松, 郑向远, 张文首等. 海洋立管悬挂状态的固有频率和振型. 船舶力学, 2015, 19(10): 1267-1274 (Lei Song, Zheng Xiangyuan, Zhang Wenshou et al. Natural frequencies and mode shapes of free-hanging risers. Journal of Ship Mechanics, 2015, 19(10): 1267-1274 (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.10.012

    Lei Song, Zheng Xiangyuan, Zhang Wenshou et al. Natural frequencies and mode shapes of free-hanging risers. Journal of Ship Mechanics, 2015, 19(10): 1267–1274 (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.10.012
    [48] Huang K, Chen HC, Chen CR. Numerical scheme for riser motion calculation during 3-D VIV simulation. Journal of Fluids and Structures, 2011, 27(7): 947-961 doi: 10.1016/j.jfluidstructs.2011.06.010
    [49] Wang EH, Xiao Q. Numerical simulation of vortex-induced vibration of a vertical riser in uniform and linearly sheared currents. Ocean Engineering, 2016, 121: 492-515 doi: 10.1016/j.oceaneng.2016.06.002
    [50] Wu J, Lie H, Larsen CM, et al. Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses. Journal of Fluids and Structures, 2016, 63: 238-258 doi: 10.1016/j.jfluidstructs.2016.03.001
    [51] Blevins RD. Flow-induced Vibration. Malabar, Florida: Krieger, 2001
    [52] Assi GRS, Bearman PW, Tognarelli MA. On the stability of a free-to-rotate short-tail fairing and a splitter plate as suppressors of vortex-induced vibration. Ocean Engineering, 2014, 92: 234-244 doi: 10.1016/j.oceaneng.2014.10.007
    [53] Williamson CHK, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988, 2(4): 355-381 doi: 10.1016/S0889-9746(88)90058-8
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  157
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-03-29
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回