[1] |
阳宁, 陈光国. 深海矿产资源开采技术的现状综述. 矿山机械, 2010, 38(10): 4-9 (Yang Ning, Cheng Guangguo. Status quo and development trendency of deep sea minerals mining technology. Mining &Processing Equipment, 2010, 38(10): 4-9 (in Chinese)Yang Ning, Cheng Guangguo. Status quo and development trendency of deep sea minerals mining technology. Mining & Processing Equipment, 2010, 38(10): 4-9 (in Chinese)
|
[2] |
Sharma R. Deep-Sea Mining: Current Status and Future Considerations. Cham: Springer International Publishing, 2017: 3-21
|
[3] |
刘少军, 刘畅, 戴瑜. 深海采矿装备研发的现状与进展. 机械工程学报, 2014, 50(2): 8-18 (Liu Shaojun, Liu Chang, Dai Yu. Status and progress on researches and developments of deep ocean mining equipments. Journal of Mechanical Engineering, 2014, 50(2): 8-18 (in Chinese) doi: 10.3901/JME.2014.02.008Liu Shaojun, Liu Chang, Dai Yu. Status and progress on researches and developments of deep ocean mining equipments. Journal of Mechanical Engineering, 2014, 50(02): 8-18 (in Chinese) doi: 10.3901/JME.2014.02.008
|
[4] |
阳宁, 夏建新. 国际海底资源开发技术及其发展趋势. 矿冶工程, 2000, 20(1): 1-4 (Yang Ning, Xia Jianxin. Development techniques for international sea-floor resources and their future trend. Mining and Metallurgical Engineering, 2000, 20(1): 1-4 (in Chinese) doi: 10.3969/j.issn.0253-6099.2000.01.001Yang Ning, Xia Jianxin. Development techniques for international sea-floor resources and their future trend. Mining and Metallurgical Engineering, 2000, 20(01): 1-4 (in Chinese) doi: 10.3969/j.issn.0253-6099.2000.01.001
|
[5] |
Leng DX, Shao S, Xie YC, et al. A brief review of recent progress on deep sea mining vehicle. Ocean Engineering, 2021, 228: 108565 doi: 10.1016/j.oceaneng.2020.108565
|
[6] |
Chen W, Xu HL, Peng N, et al. Linkage characteristics of deep-sea mining lifting system. Ocean Engineering, 2021, 233: 109074 doi: 10.1016/j.oceaneng.2021.109074
|
[7] |
Xu HL. Research on the pump–vessel combined ore lifting equipment for deep-sea rigid pipe mining system. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(1): 011010 doi: 10.1115/1.2427070
|
[8] |
Yang HL, Liu SJ. Heave compensation system of lifting pipeline for deep-sea mining based on combined action of vibration absorber and accumulator. Marine Georesources & Geotechnology, 2019, 37(3): 393-401
|
[9] |
Wu Q, Yang JM, Lu HN, et al. Effects of heave motion on the dynamic performance of vertical transport system for deep sea mining. Applied Ocean Research, 2020, 101: 102188 doi: 10.1016/j.apor.2020.102188
|
[10] |
Patel MH, Jesudasen AS. Theory and model tests for the dynamic response of free hanging risers. Journal of Sound and Vibration, 1987, 112(1): 149-166 doi: 10.1016/S0022-460X(87)80099-8
|
[11] |
Mao LJ, Zeng S, Liu QY. Dynamic mechanical behavior analysis of deep water drilling riser under hard hang-off evacuation conditions. Ocean Engineering, 2019, 183: 318-331 doi: 10.1016/j.oceaneng.2019.05.014
|
[12] |
Mao LJ, Zeng S, Liu QY, et al. Dynamical mechanics behavior and safety analysis of deep water riser considering the normal drilling condition and hang-off condition. Ocean Engineering, 2020, 199: 106996 doi: 10.1016/j.oceaneng.2020.106996
|
[13] |
Wang YB, Gao DL, Fang J. Study on lateral vibration analysis of marine riser in installation-via variational approach. Journal of Natural Gas Science and Engineering, 2015, 22: 523-529 doi: 10.1016/j.jngse.2014.12.012
|
[14] |
Wang YB, Gao DL, Fang J. Mechanical behavior analysis for the determination of riser installation window in offshore drilling. Journal of Natural Gas Science and Engineering, 2015, 24: 317-323 doi: 10.1016/j.jngse.2015.03.044
|
[15] |
Fan HH, Li CW, Wang ZM, et al. Dynamic analysis of a hang-off drilling riser considering internal solitary wave and vessel motion. Journal of Natural Gas Science and Engineering, 2017, 37: 512-522 doi: 10.1016/j.jngse.2016.12.003
|
[16] |
Chaplin JR, Bearman PW, Huera Huarte FJ, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and Structures, 2005, 21(1): 3-24 doi: 10.1016/j.jfluidstructs.2005.04.010
|
[17] |
Trim AD, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers. Journal of Fluids and Structures, 2005, 21(3): 335-361 doi: 10.1016/j.jfluidstructs.2005.07.014
|
[18] |
Song LJ, Fu SX, Cao J, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. Journal of Fluids and Structures, 2016, 63: 325-350 doi: 10.1016/j.jfluidstructs.2016.03.006
|
[19] |
宋磊建, 付世晓, 于大鹏等. 剪切流下发生涡激振动的柔性立管阻力特性研究. 力学学报, 2016, 48(2): 300-306 (Song Leijian, Fu Shixiao, Yu Dapeng, et al. Investigation of drag forces for flexible risers undergoing vortex-induced vibration in sheared flow. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 300-306 (in Chinese) doi: 10.6052/0459-1879-15-309Song Leijian, Fu Shixiao, Yu Dapeng et al. Investigation of drag forces for flexible risers undergoing vortex-induced vibration in sheared flow. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 300–306 (in Chinese) doi: 10.6052/0459-1879-15-309
|
[20] |
高云, 刘黎明, 付世晓等. 柔性立管涡激振动响应轨迹特性研究. 船舶力学, 2017, 21(5): 563-575 (Gao Yun, Liu Liming, Fu Shixiao et al. Study of the trajectory performance on the vortex-induced vibration response of a flexible riser. Journal of Ship Mechanics, 2017, 21(5): 563-575 (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.05.007Gao Yun, Liu Liming, Fu Shixiao et al. Study of the trajectory performance on the vortex-induced vibration response of a flexible riser. Journal of Ship Mechanics, 2017, 21(05): 563–575 (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.05.007
|
[21] |
王俊高, 付世晓, 许玉旺等. 正弦振荡来流下柔性立管涡激振动发展过程. 力学学报, 2014, 46(2): 173-182 (Wang Jungao, Fu Shixiao, Xu Yuwang, et al. VIV developing process of a flexible cylinder under oscillatory flow. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 173-182 (in Chinese) doi: 10.6052/0459-1879-13-277Wang Jungao, Fu Shixiao, Xu Yuwang et al. VIV developing process of a flexible cylinder under oscillatory flow. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 173–182 (in Chinese) doi: 10.6052/0459-1879-13-277
|
[22] |
徐万海, 马烨璇, 罗浩等. 柔性圆柱涡激振动流体力系数识别及其特性. 力学学报, 2017, 49(4): 818-827 (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818-827 (in Chinese) doi: 10.6052/0459-1879-16-263Xu Wanhai, Ma Yexuan, Luo Hao et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818–827 (in Chinese) doi: 10.6052/0459-1879-16-263
|
[23] |
Fujarra ALC, Pesce CP, Flemming F, et al. Vortex-induced vibration of a flexible cantilever. Journal of Fluids and Structures, 2001, 15(3): 651-658
|
[24] |
Wang JG, Xiang S, Fu SX, et al. Experimental investigation on the dynamic responses of a free-hanging water intake riser under vessel motion. Marine Structures, 2016, 50: 1-19 doi: 10.1016/j.marstruc.2016.06.003
|
[25] |
Mao LJ, Zeng S, Liu QY. Experimental investigation on vortex-induced vibrations of a hang-off evacuated drilling riser. Nonlinear Dynamics, 2020, 102(3): 1499-1516 doi: 10.1007/s11071-020-06044-0
|
[26] |
Pan ZY, Cui WC, Zhang XC. Overview on VIV of slender marine structures. Journal of Ship Mechanics, 2005, 9(6): 135-154
|
[27] |
Bishop RED, Hassan AY. The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 277(1368): 51-75
|
[28] |
高云, 邹丽, 宗智. 两端铰接的细长柔性圆柱体涡激振动响应特性数值研究. 力学学报, 2018, 50(1): 9-20 (Gao Yun, Zou Li, Zong Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9-20 (in Chinese) doi: 10.6052/0459-1879-17-340Gao Yun, Zou Li, Zong Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9–20 (in Chinese) doi: 10.6052/0459-1879-17-340
|
[29] |
宋芳, 凌国灿, 林黎明. 圆柱涡激振动的结构-尾流振子耦合模型研究. 力学学报, 2010, 42(3): 357-365 (Song Fang, Ling Liming, Ling Guocan. The study of vortex-induced vibrations by computation using coupling model of structures and wake oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 357-365 (in Chinese) doi: 10.6052/0459-1879-2010-3-2009-147Song Fang, Ling Liming, Ling Guocan. The study of vortex-induced vibrations by computation using coupling model of structures and wake oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 357–365 (in Chinese) doi: 10.6052/0459-1879-2010-3-2009-147
|
[30] |
段金龙, 周济福, 王旭等. 剪切流场中含内流立管横向涡激振动特性. 力学学报, 2021, 53(7): 1876-1884 (Duan Jinlong, Zhou Jifu, Wang Xu. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876-1884 (in Chinese) doi: 10.6052/0459-1879-21-171Duan Jinlong, Zhou Jifu, Wang Xu. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876–1884 (in Chinese) doi: 10.6052/0459-1879-21-171
|
[31] |
Yamamoto CT, Meneghini JR, Saltara F, et al. Numerical simulations of vortex-induced vibration on flexible cylinders. Journal of Fluids and Structures, 2004, 19(4): 467-489 doi: 10.1016/j.jfluidstructs.2004.01.004
|
[32] |
Lin K, Wang JS. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method. Ocean Engineering, 2019, 172: 468-486 doi: 10.1016/j.oceaneng.2018.12.006
|
[33] |
Duanmu Y, Zou L, Wan DC. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratios in uniform and shear currents. Journal of Hydrodynamics, 2017, 29(6): 1010-1022 doi: 10.1016/S1001-6058(16)60815-6
|
[34] |
Huang ZY, Deng ZZ, Liu DH, et al. Numerical simulation for VIV of a long flexible cylinder in the time domain. Ships and Offshore Structures, 2018, 13(sup1): 214-227 doi: 10.1080/17445302.2018.1438067
|
[35] |
Fan DX, Wang ZC, Triantafyllou MS, et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow. Journal of Fluid Mechanics, 2019, 881: 815-858 doi: 10.1017/jfm.2019.738
|
[36] |
Bourguet R, Karniadakis GE, Triantafyllou MS. Phasing mechanisms between the in-line and cross-flow vortex-induced vibrations of a long tensioned beam in shear flow. Computers & Structures, 2013, 122: 155-163
|
[37] |
Evangelinos C, Lucor D, Karniadakis GE. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration. Journal of Fluids and Structures, 2000, 14(3): 429-440 doi: 10.1006/jfls.1999.0278
|
[38] |
Chorin AJ. Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 1973, 57(4): 785-796 doi: 10.1017/S0022112073002016
|
[39] |
Chaplin JR, Bearman PW, Cheng Y, et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids and Structures, 2005, 21(1): 25-40 doi: 10.1016/j.jfluidstructs.2005.05.016
|
[40] |
Lin K, Wang JS, Fan DX, et al. Flow-induced cross-flow vibrations of long flexible cylinder with an upstream wake interference. Physics of Fluids, 2021, 33(6): 065104 doi: 10.1063/5.0053826
|
[41] |
Lehn E. VIV Suppression Tests on High L/D Flexible Cylinders. Trondheim, Norway: Norwegian Marine Technology Research Institute, 2003
|
[42] |
Spalart PR, Leonard A, Baganoff D. Numerical simulation of separated flows. NASA Technical Memorandum 84328, Washington, DC: NASA, 1983
|
[43] |
陈伟. 涡激振动的离散涡数值模拟. [硕士论文]. 大连: 大连理工大学, 2009Chen Wei. Numerical simulation of vortex-induced vibration using discrete vortex method. [Master Thesis]. Dalian: Dalian University of Technology, 2009 (in Chinese)
|
[44] |
Jin GQ, Zou L, Jiang YC, et al. A circle theorem technique to handle 2-D flows around arbitrary cylinders in discrete vortex method. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 209: 104496 doi: 10.1016/j.jweia.2020.104496
|
[45] |
Pang JH, Zong Z, Zou L, et al. A novel vortex scheme with instantaneous vorticity conserved boundary conditions. European Journal of Mechanics B/Fluids, 2016, 59: 219-228 doi: 10.1016/j.euromechflu.2015.12.010
|
[46] |
张亚辉, 林家浩. 结构动力学基础. 大连: 大连理工大学出版社, 2007Zhang Yahui, Lin Jiahao. Fundamentals of Structural Dynamics. Dalian: Dalian University of Technology Press, 2007 (in Chinese)
|
[47] |
雷松, 郑向远, 张文首等. 海洋立管悬挂状态的固有频率和振型. 船舶力学, 2015, 19(10): 1267-1274 (Lei Song, Zheng Xiangyuan, Zhang Wenshou et al. Natural frequencies and mode shapes of free-hanging risers. Journal of Ship Mechanics, 2015, 19(10): 1267-1274 (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.10.012Lei Song, Zheng Xiangyuan, Zhang Wenshou et al. Natural frequencies and mode shapes of free-hanging risers. Journal of Ship Mechanics, 2015, 19(10): 1267–1274 (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.10.012
|
[48] |
Huang K, Chen HC, Chen CR. Numerical scheme for riser motion calculation during 3-D VIV simulation. Journal of Fluids and Structures, 2011, 27(7): 947-961 doi: 10.1016/j.jfluidstructs.2011.06.010
|
[49] |
Wang EH, Xiao Q. Numerical simulation of vortex-induced vibration of a vertical riser in uniform and linearly sheared currents. Ocean Engineering, 2016, 121: 492-515 doi: 10.1016/j.oceaneng.2016.06.002
|
[50] |
Wu J, Lie H, Larsen CM, et al. Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses. Journal of Fluids and Structures, 2016, 63: 238-258 doi: 10.1016/j.jfluidstructs.2016.03.001
|
[51] |
Blevins RD. Flow-induced Vibration. Malabar, Florida: Krieger, 2001
|
[52] |
Assi GRS, Bearman PW, Tognarelli MA. On the stability of a free-to-rotate short-tail fairing and a splitter plate as suppressors of vortex-induced vibration. Ocean Engineering, 2014, 92: 234-244 doi: 10.1016/j.oceaneng.2014.10.007
|
[53] |
Williamson CHK, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988, 2(4): 355-381 doi: 10.1016/S0889-9746(88)90058-8
|