EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于势流理论的内孤立波与立管作用数值研究

胡英杰 邹丽 孙哲 金国庆 马鑫宇

胡英杰, 邹丽, 孙哲, 金国庆, 马鑫宇. 基于势流理论的内孤立波与立管作用数值研究. 力学学报, 2022, 54(4): 892-900 doi: 10.6052/0459-1879-21-677
引用本文: 胡英杰, 邹丽, 孙哲, 金国庆, 马鑫宇. 基于势流理论的内孤立波与立管作用数值研究. 力学学报, 2022, 54(4): 892-900 doi: 10.6052/0459-1879-21-677
Hu Yingjie, Zou Li, Sun Zhe, Jin Guoqing, Ma Xinyu. The numerical investigation of the response of risers induced by internal solitary waves based on potential flow theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 892-900 doi: 10.6052/0459-1879-21-677
Citation: Hu Yingjie, Zou Li, Sun Zhe, Jin Guoqing, Ma Xinyu. The numerical investigation of the response of risers induced by internal solitary waves based on potential flow theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 892-900 doi: 10.6052/0459-1879-21-677

基于势流理论的内孤立波与立管作用数值研究

doi: 10.6052/0459-1879-21-677
基金项目: 国家重点研发计划(2019YFC0312400, 2019YFC0312402)和国家自然科学基金(52071056)资助项目
详细信息
    作者简介:

    邹丽, 教授, 主要研究方向: 海洋工程装备、深海矿产资源开发. E-mail: lizou@dlut.edu.cn

  • 中图分类号: O352

THE NUMERICAL INVESTIGATION OF THE RESPONSE OF RISERS INDUCED BY INTERNAL SOLITARY WAVES BASED ON POTENTIAL FLOW THEORY

  • 摘要: 内孤立波是一种发生在水面以下的在世界各个海域广泛存在的大幅波浪, 其剧烈的波面起伏所携带的巨大能量对以海洋立管为代表的海洋结构物产生严重威胁, 分析其传播演化过程的流场特征及立管在内孤立波作用下的动力响应规律对于海洋立管的设计具有重要意义. 本文基于分层流体的非线性势流理论, 采用高效率的多域边界单元法, 建立了内孤立波流场分析计算的数值模型, 可以实时获得内孤立波的流场特征. 根据获得的流场信息, 采用莫里森方程计算内孤立波对海洋立管作用的载荷分布. 将内孤立波流场非线性势流计算模型与动力学有限元模型结合来求解内孤立波作用下海洋立管的动力响应特征, 讨论了内孤立波参数、顶张力大小以及内部流体密度对立管动力响应的影响. 发现随着内孤立波波幅的增大, 海洋立管的流向位移和应力明显增大. 由于上层流体速度明显大于下层, 且在所研究问题中拖曳力远大于惯性力, 因此管道顺流向的最大位移发生在上层区域. 顶张力通过改变几何刚度阵的值进而对立管的响应产生明显影响. 对于弱约束立管, 内部流体的密度对管道的流向位移影响较小.

     

  • 图  1  内孤立波与立管作用示意图

    Figure  1.  Schematic diagram of the interaction between internal solitary wave and the riser

    图  2  水平速度垂向分布与文献[33]结果对比

    Figure  2.  Comparison between the calculation result about the vertical distribution of horizontal velocity with the result of Ref. [33]

    图  3  内孤立波流场速度分布

    Figure  3.  Velocity distribution of internal solitary wave flow field

    图  4  内孤立波水平速度沿水平方向的分布

    Figure  4.  Horizontal velocity distribution of internal solitary wave

    图  5  内孤立波水平加速度分布

    Figure  5.  Horizontal acceleration distribution of internal solitary wave

    图  6  管道流向最大位移与文献[34]计算结果对比

    Figure  6.  Comparison of the maximum displacement of the pipe in flow direction with the calculation results in the Ref. [34]

    图  7  不同内孤立波入射波幅时顶张力立管的流向变形特征

    Figure  7.  Characteristics deformation of top tension riser in flow direction with different incident amplitudes of internal solitary waves

    图  8  不同顶张力时管道的变形特征

    Figure  8.  Deformation characteristics of the riser under different top tensions

    图  9  管道最大流向位移随顶张力大小的变化关系

    Figure  9.  The relationship between the maximum displacement of the riser in flow direction and the value of the top tension

    图  10  不同波幅内孤立波作用下管道的应力变化

    Figure  10.  Stress changes of the riser under the action of solitary waves with different amplitudes

    图  11  不同波幅内孤立波作用下弱约束立管的变形特征

    Figure  11.  Characteristics deformation of weakly constrained riser in flow direction with different incident amplitudes of internal solitary waves

    图  12  内部流体密度对弱约束管道位移的影响

    Figure  12.  Influence of inner fluid densities on displacement of weakly constrained riser

    表  1  顶张力立管参数

    Table  1.   Parameters of the top tension riser

    ParametersValue
    total length L/m300
    external diameter D/m0.25
    inner diameter d/m0.2
    material density ρr/(kg·m−3)7850
    inner fluid density ρi/(kg·m−3)800
    elasticity modulus E/GPa210
    下载: 导出CSV

    表  2  流体分层参数

    Table  2.   Parameters of stratified fluids

    ParametersValue
    upper fluid depth h1/m50
    lower fluid depth h2/m250
    upper fluid density ρ1/(kg·m−3)1025
    lower fluid density ρ2/(kg·m−3)1028
    下载: 导出CSV

    表  3  弱约束立管参数

    Table  3.   Parameters of the weakly constrained riser

    ParametersValue
    total length L/m300
    external diameter D/m0.25
    inner diameter d/m0.2
    material density ρr/(kg·m−3)7850
    additional weight T/kN100
    elasticity modulus E/GPa210
    下载: 导出CSV
  • [1] Helfrich KR, Melville WK. Long nonlinear internal waves. Annual Review of Fluid Mechanics, 2006, 38: 395-425 doi: 10.1146/annurev.fluid.38.050304.092129
    [2] Stanton TP, Ostrovsky LA. Observations of highly nonlinear internal solitons over the continental shelf. Geophysical Research Letters, 1998, 25(14): 2695-2698
    [3] 李家春. 水面下的波浪——海洋内波. 力学与实践, 2005, 27(2): 1-6 (Li Jiachun. Billow under the sea surface-internal waves in the ocean. Mechanics in Engineering, 2005, 27(2): 1-6 (in Chinese)
    [4] Alpers W. Theory of radar imaging of internal waves. Nature, 1985, 314(6008): 245-247 doi: 10.1038/314245a0
    [5] Magalhaes JM, Da Silva JCB. Internal solitary waves in the andaman sea: New insights from SAR imagery. Remote Sensing, 2018, 10(6): 861 doi: 10.3390/rs10060861
    [6] Pisoni JP, Glembocki NG, Romero SI, et al. Internal solitary waves from L-band SAR over the Argentine inner Patagonian shelf. Remote Sensing Letters, 2020, 11(6): 525-534 doi: 10.1080/2150704X.2020.1736725
    [7] Groeskamp S, Nauw JJ, Maas LRM. Observations of estuarine circulation and solitary internal waves in a highly energetic tidal channel. Ocean Dynamics, 2011, 61(11): 1767-1782 doi: 10.1007/s10236-011-0455-y
    [8] Gentil M, Floc' HF, Meunier T, et al. Internal solitary waves on the NW African shelf: A heuristic approach to localize diapycnal mixing hotspots. Continental Shelf Research, 2021, 226: 104492 doi: 10.1016/j.csr.2021.104492
    [9] 蔡树群, 何建玲, 谢皆烁. 近10年来南海孤立内波的研究进展. 地球科学进展, 2011, 26(7): 703-710 (Cai Shuqun, He Jianling, Xie Jieshuo. Recent decadal progress of the study on internal solitons in the south china sea. Advance in Earth Sciences, 2011, 26(7): 703-710 (in Chinese)
    [10] 安万博, 郭海燕, 刘震. 内波流场中悬链线立管涡激振动数值研究. 中国海洋大学学报, 2021, 51(8): 72-78 (An Wanbo, Guo Haiyan, Liu Zhen. Numerical study on vortex-induced vibration of catenary riser in internal wave flow field. Periodical of Ocean University of China, 2021, 51(8): 72-78 (in Chinese)
    [11] 蔡树群, 甘子钧. 南海北部孤立子内波的研究进展. 地球科学进展, 2001, 16(2): 215-219 (Cai Shuqun, Gan Zijun. Research progress of internal solitary waves in the northern South China Sea. Advance in Earth Sciences, 2001, 16(2): 215-219 (in Chinese)
    [12] Osborne AR, Burch TL, Internal solitons in the andaman sea. Science, 1980, 208(4443): 451-460
    [13] 刘治威, 郭海燕, 李晶石. 内孤立波与定常流共同作用下竖直圆管的响应分析. 海洋湖沼通报, 2021, 43(4): 31-171 (Liu Zhiwei, Guo Haiyan, Li Jingshi. Response analysis of vertical circular tube under the action of internal solitary wave and constant current. Transactions of Oceanology and Limnology, 2021, 43(4): 31-171 (in Chinese)
    [14] 张莉, 郭海燕, 李朋等. 上凸型内孤立波场中顶张力立管极值响应分析. 船舶力学, 2019, 23(2): 163-171 (Zhang Li, Guo Haiyan, Li Peng, et al. Extreme response of top tensioned riser under elevation internal solitary wave. Journal of Ship Mechanics, 2019, 23(2): 163-171 (in Chinese)
    [15] 张莉, 郭海燕, 李效民. 南海内孤立波作用下顶张力立管极值响应研究. 振动与冲击, 2013, 32(10): 100-104 (Zhang Li, Guo Haiyan, Li Xiaomin. Extreme response of top tensioned riser under internal solitary wave in South China Sea. Journal of Vibration and Shock, 2013, 32(10): 100-104 (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.10.019
    [16] 刘碧涛, 李巍, 尤云祥等. 内孤立波与深海立管相互作用数值模拟. 海洋工程, 2011, 29(4): 1-7 (Liu Bitao, Li Wei, You Yunxiang, et al. Numerical simulation of interaction of internal solitary waves with deep-sea risers. The Ocean Engineering, 2011, 29(4): 1-7 (in Chinese)
    [17] 尤云祥, 李巍, 时忠民等. 海洋内孤立波中张力腿平台的水动力特性. 上海交通大学学报, 2010, 11(1): 56-61 (You Yunxiang, Li Wei, Shi Zhongmin, et al. Hydrodynamic characteristics of tension leg platforms in ocean internal solitary waves. Journal of Shanghai Jiaotong University, 2010, 11(1): 56-61 (in Chinese)
    [18] 蒋武杰, 林忠义, 尤云祥等. 内孤立波与非均匀海流共同作用下顶张立管动力特性. 水动力学研究与进展, 2012, 27(4): 421-435 (Jiang Wujie, Lin Zhongyi, You Yunxiang, et al. Dynamic characteristics of a top tension riser under combined internal solitary wave and non-uniform current. Journal of Hydrodynomics, 2012, 27(4): 421-435 (in Chinese)
    [19] Wang RY, Chen GM, Liu XQ, et al. Safety analysis of deep-sea mining pipeline deployment operations considering internal solitary waves. Marine Georesources & Geotechnology, 2021, 40(2): 125-13
    [20] Wang F, Wang CX, Fu Q, et al. Experimental study on flow field induced by internal solitary wave and load characteristics on pile sections at different depth. Ocean Engineering, 2019, 188: 106292
    [21] Fan HH, Li CW, Wang ZM, et al. Dynamic analysis of a hang-off drilling riser considering internal solitary wave and vessel motion. Journal of Natural Gas Science and Engineering, 2017, 37: 512-522 doi: 10.1016/j.jngse.2016.12.003
    [22] 李朝玮, 樊洪海, 汪志明等. 非均匀海流、表面波与内孤立波共同作用下钻井隔水管准静态分析. 中国海上油气, 2015, 27(2): 78-86 (Li Chaowei, Fan Honghai, Wang Zhiming, et al. Quasi-static analysis of a drilling riser under combined loads of non-uniform currents, surface waves and internal solitary waves. China Offshore Oil and Gas, 2015, 27(2): 78-86 (in Chinese)
    [23] Zhang J, Zeng Y, Tang YG, et al. Numerical and experimental research on the effect of platform heave motion on vortex-induced vibration of deep sea top-tensioned riser. Shock and Vibration, 2021, 2021: 8866051
    [24] Wang SD, Wei G, Du H, et al. Experimental investigation of the wave-flow structure of an oblique internal solitary wave and its force exerted on a slender body. Ocean Engineering, 2020, 201: 107057
    [25] Cai SQ, Xu JX, Chen ZW, et al. The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile. Acta Oceanologica Sinica, 2014, 33(7): 21-26 doi: 10.1007/s13131-014-0468-8
    [26] Cai SQ, Wang SG, Long XM. A simple estimation of the force exerted by internal solitons on cylindrical piles. Ocean Engineering, 2006, 33(7): 974-980 doi: 10.1016/j.oceaneng.2005.05.012
    [27] Cai SQ, Long XM, Gan ZJ. A method to estimate the forces exerted by internal solitons on cylindrical piles. Ocean Engineering, 2003, 30(5): 673-689 doi: 10.1016/S0029-8018(02)00038-0
    [28] Cai SQ, Long XM, Wang SG. Forces and torques exerted by internal solitons in shear flows on cylindrical piles. Applied Ocean Research, 2008, 30(1): 72-77 doi: 10.1016/j.apor.2008.03.001
    [29] Gao XW, Guo L, Zhang C. Three-step multi-domain BEM solver for nonhomogeneous material problems. Engineering Analysis with Boundary Elements, 2007, 31(12): 965-973 doi: 10.1016/j.enganabound.2007.06.002
    [30] Zou L, Hu YJ, Wang Z, et al. Computational analyses of fully nonlinear interaction of an internal solitary wave and a free surface wave. Aip Advances, 2019, 9(3): 035234
    [31] Gao XW, Davies TG. Boundary Element Programming in Mechanics. Cambridge: Cambridge University Press, 2002.
    [32] 王静, 高效伟. 基于单元子分法的结构多尺度边界单元法. 计算力学学报, 2010, 27(2): 258-263 (Wang Jing, Gao Xiaowei. Structural multi -scale boundary element method based on element subdivision technique. Chinese Journal of Computational Mechanics, 2010, 27(2): 258-263 (in Chinese) doi: 10.7511/jslx20102013
    [33] Grue J, Jensen A, Rusas P, et al. Properties of large-amplitude internal waves. Journal of Fluid Mechanics, 1999, 380: 257-278 doi: 10.1017/S0022112098003528
    [34] Guo H, Zhang L, Li X, et al. Dynamic responses of top tensioned riser under combined excitation of internal solitary wave, surface wave and vessel motion. Journal of Ocean University of China, 2013, 12(1): 6-12 doi: 10.1007/s11802-013-2079-y
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  720
  • HTML全文浏览量:  225
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-02-17
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回