THE NUMERICAL INVESTIGATION OF THE RESPONSE OF RISERS INDUCED BY INTERNAL SOLITARY WAVES BASED ON POTENTIAL FLOW THEORY
-
摘要: 内孤立波是一种发生在水面以下的在世界各个海域广泛存在的大幅波浪, 其剧烈的波面起伏所携带的巨大能量对以海洋立管为代表的海洋结构物产生严重威胁, 分析其传播演化过程的流场特征及立管在内孤立波作用下的动力响应规律对于海洋立管的设计具有重要意义. 本文基于分层流体的非线性势流理论, 采用高效率的多域边界单元法, 建立了内孤立波流场分析计算的数值模型, 可以实时获得内孤立波的流场特征. 根据获得的流场信息, 采用莫里森方程计算内孤立波对海洋立管作用的载荷分布. 将内孤立波流场非线性势流计算模型与动力学有限元模型结合来求解内孤立波作用下海洋立管的动力响应特征, 讨论了内孤立波参数、顶张力大小以及内部流体密度对立管动力响应的影响. 发现随着内孤立波波幅的增大, 海洋立管的流向位移和应力明显增大. 由于上层流体速度明显大于下层, 且在所研究问题中拖曳力远大于惯性力, 因此管道顺流向的最大位移发生在上层区域. 顶张力通过改变几何刚度阵的值进而对立管的响应产生明显影响. 对于弱约束立管, 内部流体的密度对管道的流向位移影响较小.Abstract: Internal solitary waves are large waves that occur below the ocean surface and are widely present in all sea areas of the world. The huge wave profile undulations and energy pose a serious threat to marine structures like marine risers. Analysis of the flow field characteristics in the propagation and evolution process of internal solitary waves and the dynamic response law of the risers under the action of internal solitary waves are of great significance to the design of the marine risers. Multi-domain boundary element method is adopted to establish a numerical model to analyse and calculate the flow field of internal solitary wave based on the nonlinear potential flow theory in stratified fluids in this paper, and the flow field characteristics of internal solitary wave in real time can be obtained. The Morison equation is used to calculate the load distribution including inertia force and drag force induced by the internal solitary wave on the marine risers according to the flow field information calculated using the numerical simulations. The nonlinear potential flow calculation model of the internal solitary wave flow field is coupled with the dynamic finite element model to solve the dynamic response characteristics of the marine riser under the action of the nonlinear internal solitary wave. The influences of the internal solitary wave parameters, the top tension and the internal fluid densities on the dynamics of the riser are calculated and discussed. It is found that the displacement in flow direction of the ocean riser increases significantly as the amplitude of the internal solitary wave increases. The top tension has a significant impact on the response of the marine risers by changing the value of the geometric stiffness matrix. However, the density of the internal fluid has little effect on the displacement of the pipeline at flow direction for the weakly restrained risers.
-
Key words:
- internal solitary waves /
- marine risers /
- top tension /
- boundary element method /
- stratified fluid
-
表 1 顶张力立管参数
Table 1. Parameters of the top tension riser
Parameters Value total length L/m 300 external diameter D/m 0.25 inner diameter d/m 0.2 material density ρr/(kg·m−3) 7850 inner fluid density ρi/(kg·m−3) 800 elasticity modulus E/GPa 210 表 2 流体分层参数
Table 2. Parameters of stratified fluids
Parameters Value upper fluid depth h1/m 50 lower fluid depth h2/m 250 upper fluid density ρ1/(kg·m−3) 1025 lower fluid density ρ2/(kg·m−3) 1028 表 3 弱约束立管参数
Table 3. Parameters of the weakly constrained riser
Parameters Value total length L/m 300 external diameter D/m 0.25 inner diameter d/m 0.2 material density ρr/(kg·m−3) 7850 additional weight T/kN 100 elasticity modulus E/GPa 210 -
[1] Helfrich KR, Melville WK. Long nonlinear internal waves. Annual Review of Fluid Mechanics, 2006, 38: 395-425 doi: 10.1146/annurev.fluid.38.050304.092129 [2] Stanton TP, Ostrovsky LA. Observations of highly nonlinear internal solitons over the continental shelf. Geophysical Research Letters, 1998, 25(14): 2695-2698 [3] 李家春. 水面下的波浪——海洋内波. 力学与实践, 2005, 27(2): 1-6 (Li Jiachun. Billow under the sea surface-internal waves in the ocean. Mechanics in Engineering, 2005, 27(2): 1-6 (in Chinese) [4] Alpers W. Theory of radar imaging of internal waves. Nature, 1985, 314(6008): 245-247 doi: 10.1038/314245a0 [5] Magalhaes JM, Da Silva JCB. Internal solitary waves in the andaman sea: New insights from SAR imagery. Remote Sensing, 2018, 10(6): 861 doi: 10.3390/rs10060861 [6] Pisoni JP, Glembocki NG, Romero SI, et al. Internal solitary waves from L-band SAR over the Argentine inner Patagonian shelf. Remote Sensing Letters, 2020, 11(6): 525-534 doi: 10.1080/2150704X.2020.1736725 [7] Groeskamp S, Nauw JJ, Maas LRM. Observations of estuarine circulation and solitary internal waves in a highly energetic tidal channel. Ocean Dynamics, 2011, 61(11): 1767-1782 doi: 10.1007/s10236-011-0455-y [8] Gentil M, Floc' HF, Meunier T, et al. Internal solitary waves on the NW African shelf: A heuristic approach to localize diapycnal mixing hotspots. Continental Shelf Research, 2021, 226: 104492 doi: 10.1016/j.csr.2021.104492 [9] 蔡树群, 何建玲, 谢皆烁. 近10年来南海孤立内波的研究进展. 地球科学进展, 2011, 26(7): 703-710 (Cai Shuqun, He Jianling, Xie Jieshuo. Recent decadal progress of the study on internal solitons in the south china sea. Advance in Earth Sciences, 2011, 26(7): 703-710 (in Chinese) [10] 安万博, 郭海燕, 刘震. 内波流场中悬链线立管涡激振动数值研究. 中国海洋大学学报, 2021, 51(8): 72-78 (An Wanbo, Guo Haiyan, Liu Zhen. Numerical study on vortex-induced vibration of catenary riser in internal wave flow field. Periodical of Ocean University of China, 2021, 51(8): 72-78 (in Chinese) [11] 蔡树群, 甘子钧. 南海北部孤立子内波的研究进展. 地球科学进展, 2001, 16(2): 215-219 (Cai Shuqun, Gan Zijun. Research progress of internal solitary waves in the northern South China Sea. Advance in Earth Sciences, 2001, 16(2): 215-219 (in Chinese) [12] Osborne AR, Burch TL, Internal solitons in the andaman sea. Science, 1980, 208(4443): 451-460 [13] 刘治威, 郭海燕, 李晶石. 内孤立波与定常流共同作用下竖直圆管的响应分析. 海洋湖沼通报, 2021, 43(4): 31-171 (Liu Zhiwei, Guo Haiyan, Li Jingshi. Response analysis of vertical circular tube under the action of internal solitary wave and constant current. Transactions of Oceanology and Limnology, 2021, 43(4): 31-171 (in Chinese) [14] 张莉, 郭海燕, 李朋等. 上凸型内孤立波场中顶张力立管极值响应分析. 船舶力学, 2019, 23(2): 163-171 (Zhang Li, Guo Haiyan, Li Peng, et al. Extreme response of top tensioned riser under elevation internal solitary wave. Journal of Ship Mechanics, 2019, 23(2): 163-171 (in Chinese) [15] 张莉, 郭海燕, 李效民. 南海内孤立波作用下顶张力立管极值响应研究. 振动与冲击, 2013, 32(10): 100-104 (Zhang Li, Guo Haiyan, Li Xiaomin. Extreme response of top tensioned riser under internal solitary wave in South China Sea. Journal of Vibration and Shock, 2013, 32(10): 100-104 (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.10.019 [16] 刘碧涛, 李巍, 尤云祥等. 内孤立波与深海立管相互作用数值模拟. 海洋工程, 2011, 29(4): 1-7 (Liu Bitao, Li Wei, You Yunxiang, et al. Numerical simulation of interaction of internal solitary waves with deep-sea risers. The Ocean Engineering, 2011, 29(4): 1-7 (in Chinese) [17] 尤云祥, 李巍, 时忠民等. 海洋内孤立波中张力腿平台的水动力特性. 上海交通大学学报, 2010, 11(1): 56-61 (You Yunxiang, Li Wei, Shi Zhongmin, et al. Hydrodynamic characteristics of tension leg platforms in ocean internal solitary waves. Journal of Shanghai Jiaotong University, 2010, 11(1): 56-61 (in Chinese) [18] 蒋武杰, 林忠义, 尤云祥等. 内孤立波与非均匀海流共同作用下顶张立管动力特性. 水动力学研究与进展, 2012, 27(4): 421-435 (Jiang Wujie, Lin Zhongyi, You Yunxiang, et al. Dynamic characteristics of a top tension riser under combined internal solitary wave and non-uniform current. Journal of Hydrodynomics, 2012, 27(4): 421-435 (in Chinese) [19] Wang RY, Chen GM, Liu XQ, et al. Safety analysis of deep-sea mining pipeline deployment operations considering internal solitary waves. Marine Georesources & Geotechnology, 2021, 40(2): 125-13 [20] Wang F, Wang CX, Fu Q, et al. Experimental study on flow field induced by internal solitary wave and load characteristics on pile sections at different depth. Ocean Engineering, 2019, 188: 106292 [21] Fan HH, Li CW, Wang ZM, et al. Dynamic analysis of a hang-off drilling riser considering internal solitary wave and vessel motion. Journal of Natural Gas Science and Engineering, 2017, 37: 512-522 doi: 10.1016/j.jngse.2016.12.003 [22] 李朝玮, 樊洪海, 汪志明等. 非均匀海流、表面波与内孤立波共同作用下钻井隔水管准静态分析. 中国海上油气, 2015, 27(2): 78-86 (Li Chaowei, Fan Honghai, Wang Zhiming, et al. Quasi-static analysis of a drilling riser under combined loads of non-uniform currents, surface waves and internal solitary waves. China Offshore Oil and Gas, 2015, 27(2): 78-86 (in Chinese) [23] Zhang J, Zeng Y, Tang YG, et al. Numerical and experimental research on the effect of platform heave motion on vortex-induced vibration of deep sea top-tensioned riser. Shock and Vibration, 2021, 2021: 8866051 [24] Wang SD, Wei G, Du H, et al. Experimental investigation of the wave-flow structure of an oblique internal solitary wave and its force exerted on a slender body. Ocean Engineering, 2020, 201: 107057 [25] Cai SQ, Xu JX, Chen ZW, et al. The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile. Acta Oceanologica Sinica, 2014, 33(7): 21-26 doi: 10.1007/s13131-014-0468-8 [26] Cai SQ, Wang SG, Long XM. A simple estimation of the force exerted by internal solitons on cylindrical piles. Ocean Engineering, 2006, 33(7): 974-980 doi: 10.1016/j.oceaneng.2005.05.012 [27] Cai SQ, Long XM, Gan ZJ. A method to estimate the forces exerted by internal solitons on cylindrical piles. Ocean Engineering, 2003, 30(5): 673-689 doi: 10.1016/S0029-8018(02)00038-0 [28] Cai SQ, Long XM, Wang SG. Forces and torques exerted by internal solitons in shear flows on cylindrical piles. Applied Ocean Research, 2008, 30(1): 72-77 doi: 10.1016/j.apor.2008.03.001 [29] Gao XW, Guo L, Zhang C. Three-step multi-domain BEM solver for nonhomogeneous material problems. Engineering Analysis with Boundary Elements, 2007, 31(12): 965-973 doi: 10.1016/j.enganabound.2007.06.002 [30] Zou L, Hu YJ, Wang Z, et al. Computational analyses of fully nonlinear interaction of an internal solitary wave and a free surface wave. Aip Advances, 2019, 9(3): 035234 [31] Gao XW, Davies TG. Boundary Element Programming in Mechanics. Cambridge: Cambridge University Press, 2002. [32] 王静, 高效伟. 基于单元子分法的结构多尺度边界单元法. 计算力学学报, 2010, 27(2): 258-263 (Wang Jing, Gao Xiaowei. Structural multi -scale boundary element method based on element subdivision technique. Chinese Journal of Computational Mechanics, 2010, 27(2): 258-263 (in Chinese) doi: 10.7511/jslx20102013 [33] Grue J, Jensen A, Rusas P, et al. Properties of large-amplitude internal waves. Journal of Fluid Mechanics, 1999, 380: 257-278 doi: 10.1017/S0022112098003528 [34] Guo H, Zhang L, Li X, et al. Dynamic responses of top tensioned riser under combined excitation of internal solitary wave, surface wave and vessel motion. Journal of Ocean University of China, 2013, 12(1): 6-12 doi: 10.1007/s11802-013-2079-y -