EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量传递规律的海洋立管涡激振动抑制研究

马烨璇 宋志友 徐万海

马烨璇, 宋志友, 徐万海. 基于能量传递规律的海洋立管涡激振动抑制研究. 力学学报, 2022, 54(4): 901-911 doi: 10.6052/0459-1879-21-664
引用本文: 马烨璇, 宋志友, 徐万海. 基于能量传递规律的海洋立管涡激振动抑制研究. 力学学报, 2022, 54(4): 901-911 doi: 10.6052/0459-1879-21-664
Ma Yexuan, Song Zhiyou, Xu Wanhai. Study on vortex-induced vibration suppression of marine riser based on energy transfer. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 901-911 doi: 10.6052/0459-1879-21-664
Citation: Ma Yexuan, Song Zhiyou, Xu Wanhai. Study on vortex-induced vibration suppression of marine riser based on energy transfer. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 901-911 doi: 10.6052/0459-1879-21-664

基于能量传递规律的海洋立管涡激振动抑制研究

doi: 10.6052/0459-1879-21-664
基金项目: 国家自然科学基金(51979163, U2106223)和中国工程院院地合作重大咨询项目(2021DFZD2)资助
详细信息
    作者简介:

    徐万海, 教授, 主要研究方向: 涡激振动与振动控制. E-mail: xuwanhai@tju.edu.cn

  • 中图分类号: TV312

STUDY ON VORTEX-INDUCED VIBRATION SUPPRESSION OF MARINE RISER BASED ON ENERGY TRANSFER

  • 摘要: 涡激振动是造成海洋立管疲劳损伤的重要因素, 抑制振动能够保障结构安全, 延长使用寿命. 多数涡激振动抑制方法基于干扰流场的方式, 但在复杂环境条件下, 仅通过干扰流场对振动的抑制效果有限. 因此, 从结构层面考虑开展了海洋立管涡激振动抑制研究. 基于能量传递的理论, 阐述了立管涡激振动过程中的能量传递规律. 振动能量以行波形式由能量输入区传播至能量耗散区, 主要在能量耗散区被消耗. 通过局部增大能量耗散区的阻尼, 增加振动能量在传播过程中的消耗, 实现涡激振动抑制. 为了求解立管涡激振动响应, 构建了尾流振子预报模型, 并根据实验结果验证了理论模型的可靠性. 基于理论计算得到的能量系数, 判定立管涡激振动的能量输入区和能量耗散区. 通过对比立管增大阻尼前后的响应, 分析了涡激振动抑制效果. 研究结果表明: 在能量输入区增大阻尼对涡激振动的抑制效果并不显著; 在能量耗散区增大阻尼使能量衰减系数达到临界值之后, 能够显著降低立管上部和底部的涡激振动位移; 当能量衰减系数超过临界值后, 继续增大耗散区阻尼对涡激振动抑制效果的提升不明显.

     

  • 图  1  立管涡激振动过程中的能量传递示意图

    Figure  1.  Schematic diagram of energy conduction during the vortex-induced vibration

    图  2  理论模型结果与文献[36]的实验结果对比

    Figure  2.  Comparison between the present results and the results in Ref. [36]

    图  3  理论模型结果与文献[37]的实验结果对比

    Figure  3.  Comparison between the present results and the results in Ref. [37]

    图  4  立管示意图

    Figure  4.  Schematic diagram of the riser

    图  5  位移均方根轴向分布

    Figure  5.  Axial distribution of root mean square of displacements

    图  6  位移云图和频谱图

    Figure  6.  Displacement contour and frequency spectrum

    图  7  能量系数的轴向分布

    Figure  7.  Axial distribution of the energy coefficient

    图  8  立管局部阻尼增大区域示意图

    Figure  8.  Schematic diagram of the local damping increase region

    图  9  z/L = 0.8 ~ 1.0段不同阻尼比对应的βR

    Figure  9.  Values of βR corresponding to different damping ratios at z/L = 0.8 ~ 1.0

    图  10  z/L = 0 ~ 0.2段阻尼增大后的位移均方根

    Figure  10.  Root mean square of displacements after increasing damping ratio at z/L = 0 ~ 0.2

    图  11  z/L = 0.2 ~ 0.4段阻尼增大后的位移均方根

    Figure  11.  Root mean square of displacements after increasing damping ratio at z/L = 0.2 ~ 0.4

    图  12  z/L = 0.4 ~ 0.6段阻尼增大后的位移均方根

    Figure  12.  Root mean square of displacements after increasing damping ratio at z/L = 0.4 ~ 0.6

    图  13  z/L = 0.6 ~ 0.8段阻尼增大后的位移均方根

    Figure  13.  Root mean square of displacements after increasing damping ratio at z/L = 0.6 ~ 0.8

    图  14  z/L = 0.8 ~ 1.0段阻尼增大后的位移均方根

    Figure  14.  Root mean square of displacements after increasing damping ratio at z/L = 0.8 ~ 1.0

    15  位移云图和频谱图(z/L = 0.8 ~ 1.0段阻尼比为0.103)

    15.  Displacement contour and frequency spectrum (damping ratio is 0.103 at z/L = 0.8 ~ 1.0)

    15  位移云图和频谱图(z/L = 0.8 ~ 1.0段阻尼比为0.103)(续)

    15.  Displacement contour and frequency spectrum (damping ratio is 0.103 at z/L = 0.8 ~ 1.0)(continued)

    表  1  立管模型实验中的主要参数

    Table  1.   Major parameters in riser model tests

    ParametersMa et al.[36]Franzini et al.[37]
    length L/m5.602.26
    diameter D/mm1622
    bending stiffness EI/(N·m2)17.4500.056
    mass ms/(kg·m−1)0.38211.1900
    damping ratio ζs0.00320.0030
    mass ratio m*1.903.48
    pretension force Tc/N40040
    natural frequency f1/Hz2.340.84
    下载: 导出CSV

    表  2  立管的主要参数

    Table  2.   Major parameters of the riser

    ParametersValues
    length L/m1500
    diameter D/mm0.3048
    thickness/m0.0136
    Young's modulus E/Pa2.1 × 1011
    damping ratio ζs0.003
    material densityρs/(kg·m−3)7850
    sea-water density ρw/(kg·m−3)1025
    internal flow density ρf/(kg·m−3)800
    pretension force Tc/kN1662.7
    下载: 导出CSV
  • [1] Wu XD, Ge F, Hong YS. A review of recent studies on vortex-induced vibrations of long slender cylinders. Journal of Fluids and structures, 2012, 28: 292-308 doi: 10.1016/j.jfluidstructs.2011.11.010
    [2] 陈伟民, 付一钦, 郭双喜等. 海洋柔性结构涡激振动的流固耦合机理和响应. 力学进展, 2017, 47: 25-91 (Cheng Weimin, Fu Yiqin, Guo Shuangxi, et al. Fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders. Advances in Mechanics, 2017, 47: 25-91 (in Chinese)
    [3] Kandasamy R, Cui FS, Townsend N, et al. A review of vibration control methods for marine offshore structures. Ocean Engineering, 2016, 127: 279-297 doi: 10.1016/j.oceaneng.2016.10.001
    [4] Rashidi S, Hayatdavoodi M, Esfahani JA. Vortex shedding suppression and wake control: A review. Ocean Engineering, 2016, 126: 57-80 doi: 10.1016/j.oceaneng.2016.08.031
    [5] Hong K, Shah UH. Vortex-induced vibrations and control of marine risers: A review. Ocean Engineering. 2018, 152: 300-315
    [6] Liu GJ, Li HY, Qiu ZZ, et al. A mini review of recent progress on vortex-induced vibrations of marine risers. Ocean Engineering, 2020, 195: 106704 doi: 10.1016/j.oceaneng.2019.106704
    [7] Baz A, Ro J. Active control of flow-induced vibrations of a flexible cylinder using direct velocity feedback. Journal of Sound and Vibration, 1991, 146(1): 33-45 doi: 10.1016/0022-460X(91)90521-K
    [8] Do KD, Pan J. Boundary control of three-dimensional inextensible marine risers. Journal of Sound and Vibration, 2009, 327(3-5): 299-321 doi: 10.1016/j.jsv.2009.07.009
    [9] Nguyen TL, Do KD, Pan J. Boundary control of two-dimensional marine risers with bending couplings. Journal of Sound and Vibration, 2013, 332(16): 3605-3622 doi: 10.1016/j.jsv.2013.02.026
    [10] 赵志甲, 刘屿, 郭芳等. 海洋柔性立管输出反馈边界控制. 控制理论与应用, 2017, 34(2): 205-214

    Zhao Zhijia, Liu Yu, Guo Fang, et al. Boundary output feedback control for a flexible marine riser. Control Theory and Applications, 2013, 332(16): 3605-3622 (in Chinese)
    [11] Song JX, Chen WM, Guo SX, et al. LQR control on multimode vortex-induced vibration of flexible riser undergoing shear flow. Marine Structures, 2021, 79: 103047 doi: 10.1016/j.marstruc.2021.103047
    [12] 赵瑞, 马烨璇, 闫术明等. 海洋立管涡激振动的主动控制技术. 船舶工程, 2021, 43(4): 136-139 (Zhao Rui, Ma Yexuan, Yan Shuming, et al. Active control technology for vortex induced vibration of offshore riser. Ship Engineering, 2021, 43(4): 136-139 (in Chinese)
    [13] Chen WL, Xin DB, Xu F, et al. Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control. Journal of Fluids and Structures, 2013, 42: 25-39 doi: 10.1016/j.jfluidstructs.2013.05.009
    [14] 刘雨. 深海立管涡激振动主动抑制技术试验研究. [硕士论文]. 青岛: 山东科技大学, 2020

    Liu Yu. Experimental study on active vibration suppression technology of vortex-induced vibration of deep sea riser. [Master Thesis]. Qingdao: Shandong University of Science and Technology, 2020 (in Chinese))
    [15] Zhu HJ, Yao J, Ma Y, et al. Simultaneous CFD evaluation of VIV suppression using smaller control cylinders. Journal of Fluids and Structures, 2015, 57: 66-80 doi: 10.1016/j.jfluidstructs.2015.05.011
    [16] 柏伟峰. 抑制圆柱流致振动的行波壁控制方法研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2017

    Bai Weifeng. Research on suppression of the flow-induced vibration of a circular cylinder by traveling wave wall control method. [Master Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
    [17] Zdravkovich MM. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7(2): 145-189 doi: 10.1016/0167-6105(81)90036-2
    [18] Gu F, Wang J, Qiao X, et al. Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates. Journal of Fluids and Structures, 2012, 28: 263-278 doi: 10.1016/j.jfluidstructs.2011.11.005
    [19] Huera-Huarte FJ. On splitter plate coverage for suppression of vortex-induced vibrations of flexible cylinders. Applied Ocean Research, 2014, 48: 244-249 doi: 10.1016/j.apor.2014.09.002
    [20] Assi GRS, Bearman PW, Kitney N. Low drag solutions for suppressing vortex-induced vibration of circular cylinders. Journal of Fluids and Structures, 2009, 25: 666-675 doi: 10.1016/j.jfluidstructs.2008.11.002
    [21] Liang SP, Wang JS, Xu BH, et al. Vortex-induced vibration and structure instability for a circular cylinder with flexible splitter plates. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 200-209 doi: 10.1016/j.jweia.2017.12.030
    [22] Wang JS, Zheng HX, Tian ZX. Numerical simulation with a TVD-FVM method for circular cylinder wake control by a fairing. Journal of Fluids and Structures, 2015, 57: 15-31 doi: 10.1016/j.jfluidstructs.2015.05.008
    [23] Zhu HJ, Liao ZH, Gao Y, et al. Numerical evaluation of the suppression effect of a free-to-rotate triangular fairing on the vortex-induced vibration of a circular cylinder. Applied Mathematical Modelling, 2017, 52: 709-730 doi: 10.1016/j.apm.2017.07.045
    [24] 赵莹. 附属短尾整流罩的立管涡激振动抑制效果评价. [硕士论文]. 成都: 西南石油大学, 2019

    Zhao Ying. Evaluation of vortex-induced vibration suppressive effect of a circular cylinder with an attached short-tail fairing. [Master Thesis]. Chengdu: Southwest Petroleum University, 2019 (in Chinese))
    [25] Quen LK, Abu A, Kato N, et al. Performance of two- and three-start helical strakes in suppressing the vortex-induced vibration of a low mass ratio flexible cylinder. Ocean Engineering, 2018, 166: 253-261 doi: 10.1016/j.oceaneng.2018.08.008
    [26] Gao Y, Fu SX, Ren T, et al. VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents. Applied Ocean Research, 2015, 52: 102-114 doi: 10.1016/j.apor.2015.05.006
    [27] Xu WH, Luan YS, Liu LQ, et al. Influences of helical strake cross-section shape on vortex-induced vibrations suppression for a long flexible cylinder. China Ocean Engineering, 2017, 31(4): 438-446 doi: 10.1007/s13344-017-0050-1
    [28] Ma YX, Xu WH, Ai HA, et al. The effect of time-varying axial tension on VIV suppression for a flexible cylinder attached with helical strakes. Ocean Engineering, 2021, 241: 109981 doi: 10.1016/j.oceaneng.2021.109981
    [29] Xu WH, Luan YS, Han QH, et al. The effect of yaw angle on VIV suppression for an inclined flexible cylinder fitted with helical strakes. Applied Ocean Research, 2017, 67: 263-276 doi: 10.1016/j.apor.2017.07.014
    [30] Wu H, Sun DP, Lu L, et al. Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods. Journal of Fluids and Structures, 2012, 30: 115-132 doi: 10.1016/j.jfluidstructs.2012.02.004
    [31] Lu Y, Liao YY, Liu B, et al. Cross-flow vortex-induced vibration reduction of a long flexible cylinder using 3 and 4 control rods with different configurations. Applied Ocean Research, 2019, 91: 101900 doi: 10.1016/j.apor.2019.101900
    [32] Xu WH, Qin WQ, Lu Y, et al. Application of control rods for passively suppressing cross-flow VIV of an inclined flexible cylinder. Shock and Vibration, 2018, 2018: 8365726
    [33] 刘文博. 横向流诱发柱体的振动控制策略. [硕士论文]. 武汉: 华中科技大学, 2018

    Liu Wenbo. Control strategies of cross-flow induced vibration of cylinders. [Master Thesis]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese))
    [34] Dai H, Abdelkefi A, Wang L. Vortex-induced vibrations mitigation through a nonlinear energy sink. Communications in Nonlinear Science and Numerical Simulation, 2017, 42: 22-36 doi: 10.1016/j.cnsns.2016.05.014
    [35] Vandiver JK, Ma L, Rao Z. Revealing the effects of damping on the flow-induced vibration of flexible cylinders. Journal of Sound and Vibration, 2018, 433: 29-54
    [36] Ma YX, Xu WH, Pang T, et al. Dynamic characteristics of a slender flexible cylinder excited by concomitant vortex-induced vibration and time-varying axial tension. Journal of Sound and Vibration, 2020, 485: 115524 doi: 10.1016/j.jsv.2020.115524
    [37] Franzini GR, Pesce CP, Goncalves RT, et al. An experimental investigation on concomitant vortex-induced vibration and axial top-motion excitation with a long flexible cylinder in vertical configuration. Ocean Engineering, 2018, 156: 596-612 doi: 10.1016/j.oceaneng.2018.02.063
    [38] Song LJ, Fu SX, Cao J, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. Journal of Fluids and Structures, 2016, 63: 325-350 doi: 10.1016/j.jfluidstructs.2016.03.006
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  697
  • HTML全文浏览量:  179
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 录用日期:  2022-01-26
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回