EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中性润湿平板上液膜的惯性收缩

万其文 陈效鹏 胡海豹 杜鹏

万其文, 陈效鹏, 胡海豹, 杜鹏. 中性润湿平板上液膜的惯性收缩. 力学学报, 2022, 54(6): 1516-1522 doi: 10.6052/0459-1879-21-663
引用本文: 万其文, 陈效鹏, 胡海豹, 杜鹏. 中性润湿平板上液膜的惯性收缩. 力学学报, 2022, 54(6): 1516-1522 doi: 10.6052/0459-1879-21-663
Wan Qiwen, Chen Xiaopeng, Hu Haibao, Du Peng. Inertial retraction of liquid film on moderately wettable plate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1516-1522 doi: 10.6052/0459-1879-21-663
Citation: Wan Qiwen, Chen Xiaopeng, Hu Haibao, Du Peng. Inertial retraction of liquid film on moderately wettable plate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1516-1522 doi: 10.6052/0459-1879-21-663

中性润湿平板上液膜的惯性收缩

doi: 10.6052/0459-1879-21-663
基金项目: 国家自然科学基金(11872315, 52071272, 12102357, 12102358)、基础前沿项目 (JCKY2018-18)、陕西省自然科学基础研究计划(2020JC-18)和河南省水下智能装备重点实验室开放基金(KL01B2101)资助
详细信息
    作者简介:

    陈效鹏, 教授, 主要研究方向: 流体力学、计算流体力学、水动力学. E-mail: xchen76@nwpu.edu.cn

    胡海豹, 教授, 主要研究方向: 流体力学、实验流体力学、水动力学. E-mail: huhaibao@nwpu.edu.cn

  • 中图分类号: O359

INERTIAL RETRACTION OF LIQUID FILM ON MODERATELY WETTABLE PLATE

  • 摘要: 液滴撞击平板的动力学机理研究具有重要的理论与工程价值, 对该过程中液滴的形貌变化及主要影响因素的研究是科学技术界关注的重点之一. 液滴在高速撞击平板达到最大铺展半径以后发生毛细-惯性收缩, 收缩速率满足类Taylor-Culick公式. 结合实验与有限元方法, 对平板上铺展液滴的收缩过程进行了研究. 结果表明, 在中性润湿(接触角约为90°)平板上液滴/液膜的收缩在经历上述收缩过程以后, 会有一个慢匀速收缩过程, 速度约为第一阶段收缩速度的1/10. 对后一阶段的撞击参数影响测试显示, 该收缩过程主要与液体密度、液膜初始形状有关; 而与液体黏性、壁面润湿条件等无关——其仍然是一种毛细-惯性机制主导的液面演化行为, 类似于液体射流的Rayleigh-Plateau失稳. 尽管黏性效应对于液滴撞击的铺展行为有明显影响, 但上述结论在10倍黏性的液体测试中仍然成立. 本研究可以为液滴反弹机理研究和相关工艺控制提供参考.

     

  • 图  1  实验装置图

    Figure  1.  Schematic of the experimental apparatus

    图  2  数值模型与算例校核

    Figure  2.  The numerical model and validation

    3  典型液滴收缩过程. 基底为石蜡膜, 撞击We = 120

    3.  Snapshots of retraction process of a drop. Substrate is parafilm, We = 120

    图  4  液滴撞击不同平板的接触面半径演化, 其中箭头标记点大致与图3各图对应

    Figure  4.  The evolutions of spreading radii. The snapshots in Fig. 3 correspond to the arrows in Fig. 4(b)

    图  5  石蜡平板上液滴撞击过程的形状演化. 蓝、黑、红色分别对应$ We=150, 120, 90 $, “ + ”为 $ \widetilde{R} $, “ × ”为 $ \widetilde{H} $, “○”为$ S $

    Figure  5.  The evolution of geometry of drops impacting on parafilm plates. The blue, black and red symbols represent Weber numbers of $ 150, 120, 90 $, respectively. + : $ \widetilde{R} $, × : $ \widetilde{H} $, ○: $ S $

    图  6  不同条件下液膜收缩过程的数值结果

    Figure  6.  Numerical results with various parameters

    表  1  固体平板润湿性

    Table  1.   The wettability of the substrates

    Material$ {\theta }_{a} $/(°)$ {\theta }_{r} $/(°)
    glass3124
    TEFLON9160
    parafilm12089
    coated161150
    下载: 导出CSV
  • [1] Yarin AL. Drop impact dynamics: splashing, spreading, receding, bouncing. Annual Review of Fluid Mechanics, 2006, 38: 159-192 doi: 10.1146/annurev.fluid.38.050304.092144
    [2] Smith FR, Nicloux C, Brutin D. Influence of the impact energy on the pattern of blood drip stains. Physical Review Fluids, 2018, 3(1): 013601 doi: 10.1103/PhysRevFluids.3.013601
    [3] Laan N, De Bruin KG, Slenter D, et al. Bloodstain pattern analysis: implementation of a fluid dynamic model for position determination of victims. Scientific Reports, 2015, 5: 11461 doi: 10.1038/srep11461
    [4] Damak M, Mahmoudi SR, Hyder MN, et al. Enhancing droplet deposition through in-situ precipitation. Nature Communications, 2016, 7: 1-9
    [5] Xu Y, Vincent S, He QC, et al. Spread and recoil of liquid droplets impacting on solid surfaces with various wetting properties. Surface & Coatings Technology, 2019, 357: 140-152
    [6] Lojewski B, Yang WW, Duan HX, et al. Design, fabrication, and characterization of linear multiplexed electrospray atomizers Micro-Machined from metal and polymers. Aerosol Science and Technology, 2013, 47(2): 146-152 doi: 10.1080/02786826.2012.734936
    [7] Modak CD, Kumar A, Tripathy A, et al. Drop impact printing. Nature Communications, 2020, 11(1): 1-11 doi: 10.1038/s41467-019-13993-7
    [8] Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization and Sprays, 2001, 11(2): 155-165
    [9] Xu L, Zhang WW, Nagel SR. Drop splashing on a dry smooth surface. Physical Review Letters, 2005, 94(18): 184505 doi: 10.1103/PhysRevLett.94.184505
    [10] Josserand C, Thoroddsen ST. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2016, 48: 365-391 doi: 10.1146/annurev-fluid-122414-034401
    [11] Xia Z, Xiao Y, Yang Z, et al. Droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by hybrid laser ablation and silanization process. Materials, 2019, 12(5): 765 doi: 10.3390/ma12050765
    [12] Bennett T, Poulikakos D. Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. Journal of Material Science, 1993, 28: 963-970 doi: 10.1007/BF00400880
    [13] Clanet C, Beguin C, Richard D, et al. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004, 517: 199-208 doi: 10.1017/S0022112004000904
    [14] 黄海盟. 液滴撞击固体壁面的最大铺展. [硕士论文]. 西安: 西北工业大学, 2017

    Huang Haimeng. Maximum spread of a droplet impacting a solid surfaces. [Master Thesis]. Xi 'an: Northwestern Polytechnical University, 2017(in Chinese))
    [15] 高珊, 曲伟, 姚伟. 喷雾冷却中液滴冲击壁面的流动和换热. 工程热物理学报, 2007, 28(1): 221-224 (Gao Shan, Qu Wei, Yao Wei. Flow and heat transfer of droplet impinging on hot flat surface during spray cooling. Journal of Engineering Thermophysics, 2007, 28(1): 221-224 (in Chinese)

    Gao Shan, Qu Wei, Yao Wei. Flow and heat transfer of droplet impinging on hot flat surface during spray cooling. Journal of Engineering Thermophysics, 2007, 28(1): 221-224 (in Chinese)
    [16] 高淑蓉, 金佳鑫, 魏博建等. 液滴撞击疏水/超疏水表面防结冰技术研究进展及未来展望. 化工学报, 2021, 72(8): 3946-3957 (Gao Shurong, Jin Jiaxin, Wei Bojian, et al. Research progress and future prospects of anti-/de-icing technology for droplets impact on hydrophobic/superhydrophobic surfaces. CIESC Journal, 2021, 72(8): 3946-3957 (in Chinese)

    Gao Shurong, Jin Jiaxin, Wei Bojian, et al. Research progress and future prospects of anti-/de-icing technology for droplets impact on hydrophobic/superhydrophobic surfaces. CIESC Journal, 2021, 72(8): 3946-3957 (in Chinese))
    [17] Chu F, Luo J, Hao C, et al. Directional transportation of impacting droplets on wettability-controlled surfaces. Langmuir, 2020, 36(21): 5855-5862 doi: 10.1021/acs.langmuir.0c00601
    [18] Bartolo D, Josserand C, Bonn D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. Journal of Fluid Mechanics, 2005, 545: 329-338 doi: 10.1017/S0022112005007184
    [19] Wang F, Fang T. Retraction dynamics of water droplets after impacting upon solid surfaces from hydrophilic to superhydrophobic. Physical Review Fluids, 2020, 5(3): 033604 doi: 10.1103/PhysRevFluids.5.033604
    [20] Richard D, Clanet C, Quéré D. Contact time of a bouncing drop. Nature, 2002, 417: 811
    [21] Eggers J, Fontelos MA, Josserand C, et al. Drop dynamics after impact on a solid wall: Theory and simulations. Physics of Fluids, 2010, 22(6): 3432498
    [22] Roisman IV, Rioboo R, Tropea C. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2022): 1411-1430 doi: 10.1098/rspa.2001.0923
    [23] Bird JC, Dhiman R, Kwon HM, et al. Reducing the contact time of a bouncing drop. Nature, 2013, 503: 385-388 doi: 10.1038/nature12740
    [24] Li H, Fang W, Li Y, et al. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications, 2019, 10(1): 1-6 doi: 10.1038/s41467-018-07882-8
    [25] Chu Z, Jiao W, Huang Y, et al. Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces. Applied Surface Science, 2020, 530: 147099 doi: 10.1016/j.apsusc.2020.147099
    [26] Zhao Z, Li H, Hu X, et al. Steerable droplet bouncing for precise materials transportation. Advanced Materials Interfaces, 2019, 6(21): 1901033 doi: 10.1002/admi.201901033
    [27] Liu M, Chen XP. Numerical study on the stick-slip motion of contact line moving on heterogeneous surfaces. Physics of Fluids, 2017, 29(8): 082102 doi: 10.1063/1.4996189
    [28] Liu M, Chen XP. Morphological classification and dynamics of a two-dimensional drop sliding on a vertical plate. The European Physical Journal E, 2018, 41(8): 1-8
    [29] Guo J, Chen XP, Shui L. Surface wave mechanism for directional motion of droplet on an obliquely vibrated substrate. Physics of Fluids, 2020, 32: 031701 doi: 10.1063/1.5143874
    [30] Bartolo D, Josserand C, Bonn D. Singular jets and bubbles in drop impact. Physical Review Letters, 2006, 96(12): 124501 doi: 10.1103/PhysRevLett.96.124501
    [31] Scheller BL, Bousfield DW. Newtonian drop impact with a solid-surface. AICHE Journal, 1995, 41(6): 1357-1367 doi: 10.1002/aic.690410602
    [32] Abdulhamid A. Droplet impacting on a hydrophobic surface: Influence of surface wetting state on droplet behavior. Journal of Fluids Engineering-Transactions of the ASME, 2020, 142(7): 071205 doi: 10.1115/1.4046559
    [33] Damak M, Varanasi K. Expansion and retraction dynamics in drop-on-drop impacts on nonwetting surfaces. Physical Review Fluids, 2018, 3(9): 093602 doi: 10.1103/PhysRevFluids.3.093602
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  151
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回