EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

串列双锥柱绕流流动特性的大涡模拟研究

刘健 邹琳 陶凡 左红成 徐汉斌

刘健, 邹琳, 陶凡, 左红成, 徐汉斌. 串列双锥柱绕流流动特性的大涡模拟研究. 力学学报, 2022, 54(5): 1209-1219 doi: 10.6052/0459-1879-21-653
引用本文: 刘健, 邹琳, 陶凡, 左红成, 徐汉斌. 串列双锥柱绕流流动特性的大涡模拟研究. 力学学报, 2022, 54(5): 1209-1219 doi: 10.6052/0459-1879-21-653
Liu Jian, Zou Lin, Tao Fan, Zuo Hongcheng, Xu Hanbin. Large eddy simulation of flow past two conical cylinders in tandem arrangement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1209-1219 doi: 10.6052/0459-1879-21-653
Citation: Liu Jian, Zou Lin, Tao Fan, Zuo Hongcheng, Xu Hanbin. Large eddy simulation of flow past two conical cylinders in tandem arrangement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1209-1219 doi: 10.6052/0459-1879-21-653

串列双锥柱绕流流动特性的大涡模拟研究

doi: 10.6052/0459-1879-21-653
基金项目: 国家自然科学基金资助项目(11972268)
详细信息
    作者简介:

    邹琳, 教授, 主要研究方向: 流动控制. E-mail: l.zou@163.com

    徐汉斌, 副教授, 主要研究方向: 计算力学. E-mail: xhbwhhb@whut.edu.cn

  • 中图分类号: O357.1

LARGE EDDY SIMULATION OF FLOW PAST TWO CONICAL CYLINDERS IN TANDEM ARRANGEMENT

  • 摘要: 利用大涡模拟研究了雷诺数Re = 3900下串列双锥柱在间距比L/Dm = 2 ~ 10下的升阻力特性及三维流动结构. 研究发现: 上游锥柱在后方形成的两个展向不对称回流区, 使其后方压力分布不对称. 上游锥柱发展的上洗、下洗和侧面剪切层作用在下游锥柱的附着点位置不同是上游和下游锥柱时均阻力系数和脉动升力系数变化的主要原因, 串列双锥柱间流动结构随间距比变化可分为三种状态: 剪切层包裹状态, 过渡状态及尾流撞击状态. 剪切层包裹状态. 上游锥柱的自由端主导来流在下游锥柱迎风面影响范围广, 上游锥柱剪切层完全包裹住下游锥柱, 从而抑制下游锥柱后方回流区形成, 导致下游锥柱时均阻力系数降低; 尾流撞击状态; 上游锥柱尾流得到充分发展, 其回流区大小随间距比增大不再发生变化, 上游锥柱尾流出现周期性脱落, 撞击在下游锥柱表面, 从而使脉动升力系数大幅增加, 最大脉动升力系数较单直圆柱提升约20.7倍; 过渡状态, 此时时均阻力系数和脉动升力系数均会较剪切层包裹状态增加. 该研究可以为风力俘能结构群列阵布局提供理论支持.

     

  • 图  1  锥柱结构示意图及表面网格划分

    Figure  1.  Schematic diagram of conical cylinder structure and meshing

    图  2  串列双锥柱计算域及网格示意图

    Figure  2.  Schematic diagram of calculation domain and grid of tandem two conical cyliners

    图  3  串列双锥柱实验台架

    Figure  3.  Experimental of two conical cylinders in tandem arrangement

    图  4  间距比L/Dm = 5时串列双锥形圆柱烟线实验图与仿真流线图

    Figure  4.  Smokeline diagrams and numerical streamline diagrams of two conical cylinders in tandem arrangement at spacing ratio L/Dm = 5

    图  5  串列双锥柱时均阻力系数和脉动升力系数随间距比变化

    Figure  5.  Cdmean and Clrms of two conical cylinders in tandem arrangement change with the spacing ratios

    图  6  间距比L/Dm = 2 ~ 9下串列双锥柱时均压力系数分布图

    Figure  6.  Distribution diagram of time-average Cp of two conical cylinders in tandem arrangement with spacing ratio L/Dm = 2 ~ 9

    图  7  间距比L/Dm = 2 ~ 9下串列双锥柱在Y = 0, S1, S2, S3截面时均流线图

    Figure  7.  Time-average streamline diagram of two conical cylinders in tandem arrangement with spacing ratio L/Dm = 2 ~ 9 at Y = 0, S1, S2, S3 sections

    图  8  间距比L/Dm = 2 ~ 9下串列双锥柱瞬时涡量图(Q = 1 × 104), view1为整体视图, view2为俯视图

    Figure  8.  Instantaneous vorticity diagram of two conical cylinders in tandem arrangement with spacing ratio L/Dm = 2 ~ 9 (Q = 1 × 104). View1 is the general view; view2 is the top view

    图  9  间距比L/Dm = 2 ~ 9下串列双锥柱在S1, S2, S3截面的涡量图

    Figure  9.  Z-vorticity of two conical cylinders in tandem arrangement with spacing ratio L/Dm = 2 ~ 9 at S1, S2, S3 sections

    表  1  相关参数定义

    Table  1.   Parameter definition

    ParameterRemarkParameterRemark
    Dm 0.01 m, average diameter of conical cylinder $\nu $ 1.48 × 10−5 m2/s, kinematic viscosity
    H 7Dm, the length of the conical cylinder ρ 1.225 kg/m3, density of air
    L center distance between two conical cylinders U, U 5.772 m/s, velocity of inlet
    Δy height of the first level grid Re 3900, Reynolds number
    Cd 2Fd/(ρU2HDm), drag coefficient, Fd is the total
    drag force
    Cp (pp0)/(0.5ρU2), pressure coefficient, p, p0 are the static
    pressure and reference pressure, respectively
    Cl 2Fl/(ρU2HDm), lift coefficient, Fl is the total lift force Nfe number of free ends
    Cdmean time-averaged drag coefficient Clrms RMS value of lift coefficient
    下载: 导出CSV

    表  2  时间步长、圆周节点数和第一层高度对时均阻力系数, 脉动升力系数和Strouhal数的影响

    Table  2.   The influence of time step and grid parameters on the Cdmean , Clrms and St

    CaseGird numberΔy/DNfeΔtReH/DmCdmeanClrmsSt
    Case11 035 4240.00120.00023 9007.00.7490.01510.184
    Case22 862 8400.00120.00023 9007.00.7560.01230.167
    Case35 407 5240.00120.00023 9007.00.7580.01210.164
    Case42 956 9200.000520.00023 9007.00.7590.01190.161
    Case52 709 5600.00220.00023 9007.00.7410.01120.154
    Case62 862 8400.00120.000023 9007.00.7600.01260.164
    Case72 862 8400.00120.0023 9007.00.7430.01100.115
    num.[25]13 9006.00.9320.0190
    exp.[26]288 0005.00.742
    下载: 导出CSV
  • [1] May R, Jackson CR, Middel H, et al. Life-cycle impacts of wind energy development on bird diversity in Norway. Environmental Impact Assessment Review, 2021, 90: 106635 doi: 10.1016/j.eiar.2021.106635
    [2] 王同光, 田琳琳, 钟伟等. 风能利用中的空气动力学研究进展Ⅰ: 风力机气动特性. 空气动力学学报, 2022, 出版中

    Wang Tongguang, Tian Linlin, Zhong Wei, et al. A review of aerodynamic research progress in wind energy Ⅰ: wind turbine aerodynamic characteristics. Acta Aerodynamica Sinica, 2022, in press(in Chinese)
    [3] 白旭, 陈云. 串列不等直径双圆柱海流能发电振子涡激振动数值模拟. 可再生能源, 2020, 38(12): 1698-1704 (Bai Xu, Chen Yun. Numerical simulation of vortex induced vibration of a series of unequal diameter double cylindrical current energy generator. Renewable Energy Resources, 2020, 38(12): 1698-1704 (in Chinese) doi: 10.3969/j.issn.1671-5292.2020.12.021
    [4] Bilgen O, Kochersberger K, Diggs E, et al. Morphing wing aerodynamic control via macro-fiber-composite actuators in an unmanned aircraft//AIAA Infotech@ Aerospace 2007 Conference and Exhibit, 2007: 2741
    [5] Zhang ZH, Tu JH, Zhang K, et al. Vortex characteristics and flow-induced forces of the wavy cylinder at a subcritical Reynolds number. Ocean Engineering, 2021, 222(2): 108593
    [6] Zhang H, Yang JM, Xiao LF, et al. Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re = 3900. Journal of Hydrodynamics, 2015, 27(2): 195-203 doi: 10.1016/S1001-6058(15)60472-3
    [7] 赵桂欣, 桂洪斌. 亚临界状态下两端自由圆柱绕流减阻数值模拟分析. 中国舰船研究, 2020, 15(S1): 12-19 (Zhao Guixin, Gui Hongbin. Numerical simulation analysis on drag reduction of circular cylinder with two free ends in subcritical state. Chinese Journal of Ship Research, 2020, 15(S1): 12-19 (in Chinese)
    [8] 赵萌, 毛军, 郗艳红. 高雷诺数下有限长圆柱绕流阻力特性研究. 机械工程学报, 2015, 51(22): 176-182 (Zhao Meng, Mao Jun, Xi Yanhong. Research on drag characteristic of flow around finite circular cylinder at High Reynolds Numbers. Journal of Mechanical Engineering, 2015, 51(22): 176-182 (in Chinese) doi: 10.3901/JME.2015.22.176
    [9] 乔永亮. 有限长圆柱绕流的流动特性及其机理研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2016

    Qiao Yongliang. Study on the flow characteristics and me chanism of flow around a finite-length circular cylinder. [Master Thesis], Harbin: Harbin Institute of Technology, 2016 (in Chinese))
    [10] 杨耀宗. 波浪锥柱流固耦合振动机理的研究. [硕士论文]. 武汉: 武汉理工大学, 2020

    Yang Yaozong. Study on the fluid-solid coupling vibration mechanism of wavy cone cylinder. [Master Thesis]. Wuhan: Wuhan University of Technology, 2020 (in Chinese))
    [11] Alam MM, Sakamoto H, Zhou Y. Determination of flow configurations and fluid forces acting on two staggered circular cylinders of equal diameter in cross-flow. Journal of Fluids and Structures, 2005, 21(4): 363-394 doi: 10.1016/j.jfluidstructs.2005.07.009
    [12] Alam MM, Meyer JP. Two interacting cylinders in cross flow. Physical Review E, 2011, 84: 056304
    [13] Zdravkovich MM. Review of flow interference between two circular cylinder s in various arrangements. Asme Journal of Fluids Engineering, 1977, 99: 618-633 doi: 10.1115/1.3448871
    [14] 杜晓庆, 顾李敏, 吴葛菲等. 错列双圆柱的脉动升力特性及其流场机理. 哈尔滨工业大学学报, 2020, 52(8): 62-71 (Du Xiaoqing, Gu Limin, Wu Gefei. Fluctuating lift and flow field mechanisms of two staggered circular cylinders. Journal of Harbin Institute of Technology, 2020, 52(8): 62-71 (in Chinese)
    [15] 杜晓庆, 林伟群, 施春林等. 高雷诺数下并列双圆柱绕流的大涡模拟. 哈尔滨工业大学学报, 2019, 51(6): 193-200 (Du Xiaoqing, Lin Weiqun, Shi Chunlin, et al. Large eddy simulation of flow around two side - by-side circular cylinders at a high reynolds number. Journal of Harbin Institute of Technology, 2019, 51(6): 193-200 (in Chinese)
    [16] 杜晓庆, 张盛华, 王玉梁等. 错列双圆柱下游圆柱的升力机理. 同济大学学报(自然科学版), 2019, 47(4): 491-498 (Du Xiaoqing, Zhang Shenghua, Wang Yuliang, et al. Lift mechanism of downstream cylinder on two staggered circular cylinders. Journal of Tongji University (Natural Science), 2019, 47(4): 491-498 (in Chinese)
    [17] Papaioannou GV, Yue D, Triantafyllou MS, et al. Three-dimensionality effects in flow around two tandem cylinders. Journal of Fluid Mechanics, 2006, 558: 387-413 doi: 10.1017/S0022112006000139
    [18] 刘小兵, 姜会民, 王世博等. 串列三圆柱的脉动气动力特性试验研究. 振动与冲击, 2021, 40(13): 96-103 (Liu Xiaobing, Jiang Huimin, Wang Shibo, et al. Tests for fluctuating aerodynamic force characteristics of three cylinders in series. Journal of Vibration and Shock, 2021, 40(13): 96-103 (in Chinese)
    [19] 涂佳黄, 曹波, 谭潇玲等. 串列双圆柱体绕流特性与互扰效应研究. 应用力学学报, 2019, 36(4): 869-875, 998 (Tu Jiahuang, Cao Bo, Tan Xiaolin, et al. Study on flow characteristics and mutual interference effect around tandem double cylinders. Chinese Journal of Applied Mechanics, 2019, 36(4): 869-875, 998 (in Chinese)
    [20] 唐涛, 朱红钧, 周同明等. 串列梯形柱绕流水动力特性数值分析. 水动力学研究与进展, 2021, 36(4): 471-480 (Tang Tao, Zhu Hongjun, Zhou Tongming, et al. Numerical investigation of flow past two tandem trapezoidal cylinders and their hydrodynamic characteristics. Chinese Journal of Hydrodynamics, 2021, 36(4): 471-480 (in Chinese)
    [21] 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报, 2020, 52(5): 1314-1322 (Chen Linfeng. A residual-based unresolved-scale finite element modelling for implict large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322 (in Chinese)
    [22] 吴霆, 时北极, 王士召等. 大涡模拟的壁模型及其应用. 力学学报, 2018, 50(3): 453-466 (Wu ting, Shi Beiji, Wang Shizhao, et al. Wall-model for large-eddy simulation and its applications. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 453-466 (in Chinese)
    [23] Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Review, 1963, 91: 99-165 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [24] Ma HT, He L, et al. Large eddy simulation of natural convection heat transfer and fluid flow around a horizontal cylinder. International Journal of Thermal Sciences, 2021, 162: 106789 doi: 10.1016/j.ijthermalsci.2020.106789
    [25] 赵桂欣, 桂洪斌, 王晓聪. 有限长波浪形圆柱绕流数值模拟. 哈尔滨工业大学学报, 2021, 53(6): 163-170 (Zhao Guixin, Gui Hongbin, Wang Xiaocong. Numerical simulation of flow around finite ength wavy cylinders. Journal of Harbin Institute of Technology, 2021, 53(6): 163-170 (in Chinese)
    [26] Zdravkovich M, Brand V, Mathew G, et al. Flow past short circular cylinders with two free ends. Journal of Fluid Mechanics, 2006, 203(203): 557-575
    [27] Essel EE, Tachie MF, Balachandar R. Time-resolved wake dynamics of finite wall-mounted circular cylinders submerged in a turbulent boundary layer. Journal of Fluid Mechanics, 2021, 917: A8
    [28] 梁圣召, 周军伟, 梅蕾. 不同工况下有限长圆柱绕流实验测量及分析. 舰船科学技术, 2021, 43(11): 19-24 (Liang Shengzhao, Zhou Junwei, Mei Lei. Experiments and numerical simulations of the three-dimensional flow around a finite-length circular cylinder. Ship Science and Technology, 2021, 43(11): 19-24 (in Chinese)
    [29] Gao W, Nelias D, Lű Y, et al. Numerical investigations on drag coefficient of circular cylinder with two free ends in roller bearings. Tribology International, 2018, 123: 43-49 doi: 10.1016/j.triboint.2018.02.044
    [30] Frederich O, Scouten J, Luchtenburg DM, et al. Large-scale dynamics in the flow around a finite cylinder with a ground plate. Fluid Dynamics Research, 2011, 43(1): 015504 doi: 10.1088/0169-5983/43/1/015504
    [31] 王义乾, 桂南. 第三代涡识别方法及其应用综述. 水动力学研究与进展(A辑), 2019, 34(4): 413-429 (Wang Yiian, Gui Nan. A review of the third-generation vortex identification method and its applications. Chinese Journal of Hydrodynamics, 2019, 34(4): 413-429 (in Chinese)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  26
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 录用日期:  2022-03-29
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回