EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土的各向同性化变换应力方法

姚仰平 唐科松

姚仰平, 唐科松. 土的各向同性化变换应力方法. 力学学报, 2022, 54(6): 1651-1659 doi: 10.6052/0459-1879-21-651
引用本文: 姚仰平, 唐科松. 土的各向同性化变换应力方法. 力学学报, 2022, 54(6): 1651-1659 doi: 10.6052/0459-1879-21-651
Yao Yangping, Tang Kesong. Isotropically transformed stress method for the anisotropy of soils. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659 doi: 10.6052/0459-1879-21-651
Citation: Yao Yangping, Tang Kesong. Isotropically transformed stress method for the anisotropy of soils. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659 doi: 10.6052/0459-1879-21-651

土的各向同性化变换应力方法

doi: 10.6052/0459-1879-21-651
基金项目: 国家自然科学基金(51979001)和国家重点研发计划(2018YFE0207100)资助项目
详细信息
    作者简介:

    姚仰平, 教授, 主要研究方向: 土的本构关系. E-mail: ypyao@buaa.edu.cn

  • 中图分类号: TU43

ISOTROPICALLY TRANSFORMED STRESS METHOD FOR THE ANISOTROPY OF SOILS

  • 摘要: 在不同方向的力学参数、结构特性及应力应变关系的不同为材料的各向异性, 建立能够反映这种复杂特性的强度准则、本构模型, 对于材料本构关系的研究具有重要的理论意义. 但材料的各向异性一直是其力学特性描述的难点, 对此, 郑泉水院士提出了各向同性化定理, 为后续研究解决材料的各向异性问题提供了方向及思路. 作者等针对土的应力诱导各向异性提出了变换应力方法, 这种方法同样遵循对材料进行各向异性问题各向同性化处理的思路, 与郑泉水院士的各向同性化定理是一脉相承的, 也是对各向同性化定理的发展. 本文旨在通过分析各向同性化定理与变换应力方法明确两者间的内在联系, 并以土材料的应力诱导各向异性处理为例, 说明在具体材料的各向异性处理过程中面临的现实问题以及变换应力方法是如何解决这些问题的. 分析并给出了变换应力方法应用时的三个合理假设, 推导出了具体的变换应力数学公式, 阐明了在考虑土的应力诱导各向异性的具体函数已经给出的情况下, 在构造土的弹塑性本构模型中采用变换应力方法的必要性.

     

  • 图  1  SMP准则在π平面上的屈服线/破坏线(真应力空间)

    Figure  1.  Yield locus/failure loci of SMP criterion in π-plane (original stress space)

    图  2  SMP准则在$ {{\tilde {\text{π}} }} $平面上的屈服线/破坏线(变换应力空间)

    Figure  2.  Yield locus/failure loci of SMP criterion in $ {{\tilde {\text{π}} }} $-plane (transformed stress space)

    图  3  天然地基中的土单元的受力状态

    Figure  3.  The stress state of unit from natural foundation soil

    图  4  SMP准则在真应力空间和变换应力空间中在π平面上的对应关系

    Figure  4.  The relation of original stress space and transformed space of SMP criterion in π-plane

    图  5  部分屈服面及其对应塑性应变增量方向[33]

    Figure  5.  Plastic strain increment directions and associated yield envelope segments[33]

    图  6  MCC模型在$p \text{-} \left( {{\sigma _{\text{a}}} - {\sigma _{\text{r}}}} \right)$面上的屈服线及正交方向

    Figure  6.  Yield locus of generalized MCC model and the orthogonal directions in $p \text{-} \left( {{\sigma _{\text{a}}} - {\sigma _{\text{r}}}} \right)$ plane

    图  7  MCC模型在$\tilde p \text{-} \left( {{{\tilde \sigma }_{\text{a}}} - {{\tilde \sigma }_{\text{r}}}} \right)$面上的屈服线及其对应的正交方向

    Figure  7.  Yield locus of generalized MCC model and the orthogonal directions in $\tilde p \text{-} \left( {{{\tilde \sigma }_{\text{a}}} - {{\tilde \sigma }_{\text{r}}}} \right)$ plane

    图  8  变换应力三维化的MCC模型在$p \text{-} \left( {{\sigma _{\text{a}}} - {\sigma _{\text{r}}}} \right)$面上的屈服线及流动方向

    Figure  8.  Yield locus and plastic strain flow directions of generalized MCC model using TS method in $p \text{-} \left( {{\sigma _{\text{a}}} - {\sigma _{\text{r}}}} \right)$ plane

    图  9  三维化MCC模型在变换应力空间内屈服面

    Figure  9.  Yield surface of generalized MCC model in transformed stress space

    图  10  三维化MCC模型在真应力空间内屈服面

    Figure  10.  Yield surface of generalized MCC model in real stress space

    图  11  三维化MCC模型的屈服面及其相应的塑性应变流动方向

    Figure  11.  Yield surface of generalized MCC model with corresponding plastic strain directions

  • [1] Zheng QS. Theory of representations for tensor functions-a unified invariant approach to constitutive equations. Applied Mechanics Reviews, 1994, 47(11): 545-587 doi: 10.1115/1.3111066
    [2] 王刚, 韦林邑, 魏星等. 高土石坝心墙水力破坏机制研究进展. 水利水电技术, 2019, 50(8): 55-68 (Wang Gang, Wei Linyi, Wei Xing, et al. Progress of study on hydraulic failure mechanism of clay core-wall in high earth-rockfill dam. Water Resources and Hydropower Engineering, 2019, 50(8): 55-68 (in Chinese)

    Wang Gang, Wei Linyi, Wei Xing, et al. Progress of study on hydraulic failure mechanism of clay core-wall in high earth-rockfill dam. Water Resources and Hydropower Engineering, 2019, 50(8): 55-68 (in Chinese)
    [3] Chen Y, Lin H, Cao R, et al. Slope stability analysis considering different contributions of shear strength parameters. International Journal of Geomechanics, 2021, 21(3): 04020265 doi: 10.1061/(ASCE)GM.1943-5622.0001937
    [4] Stockton E, Leshchinsky BA, Olsen MJ, et al. Influence of both anisotropic friction and cohesion on the formation of tension cracks and stability of slopes. Engineering Geology, 2019, 249: 31-44 doi: 10.1016/j.enggeo.2018.12.016
    [5] Bovolenta R, Brencich A. Effect of deep excavations and deformable retaining structures on neighboring buildings: A case study. Engineering Failure Analysis, 2021, 122: 105269 doi: 10.1016/j.engfailanal.2021.105269
    [6] Zhang J, Li F, Zeng L, et al. Numerical simulation of the moisture migration of unsaturated clay embankments in southern China considering stress state. Bulletin of Engineering Geology and the Environment, 2021, 80(1): 11-24 doi: 10.1007/s10064-020-01916-6
    [7] Zhang R, Goh ATC, Li Y, et al. Assessment of apparent earth pressure for braced excavations in anisotropic clay. Acta Geotechnica, 2021, 16(5): 1615-1626 doi: 10.1007/s11440-020-01129-x
    [8] 田雨. 基于各向异性变换应力法的UH模型及其应用. [博士论文]. 北京: 北京航空航天大学, 2018

    Tian Yu. UH model based on the anisotropic transformed stress method and its application. [PhD Thesis]. Beijing: Beihang University, 2018 (in Chinese)
    [9] 张坤勇, 殷宗泽, 梅国雄. 土体各向异性研究进展. 岩土力学, 2004, 25(9): 1503-1509 (Zhang Kunyong, Yin Zongze, Mei Guoxiong. Development of soil’s anisotropy study. Rock and Soil Mechanics, 2004, 25(9): 1503-1509 (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.09.033

    Zhang Kunyong, Yin Zongze, Mei Guoxiong. Development of soil’s anisotropy study. Rock and Soil Mechanics, 2004, 25(9): 1503-1509 (in Chinese)) doi: 10.3969/j.issn.1000-7598.2004.09.033
    [10] Yamada Y, Ishihara K. Anisotropic deformation characteristics of sand under three dimensional stress conditions. Soils and Foundations, 1979, 19(2): 79-94 doi: 10.3208/sandf1972.19.2_79
    [11] Xiao Y, Zhang Z, Wang J. Granular hyperelasticity with inherent and stress-induced anisotropy. Acta Geotechnica, 2020, 15(3): 671-680 doi: 10.1007/s11440-019-00768-z
    [12] Oda M, Koishikawa I, Higuchi T. Experimental study of anisotropic shear strength of sand by plane strain test. Soils and Foundations, 1978, 18(1): 25-38 doi: 10.3208/sandf1972.18.25
    [13] Borja RI, Yin Q, Zhao Y. Cam-clay plasticity Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112695
    [14] Fakharian K, Kaviani-Hamedani F, Imam SMR. Influences of initial anisotropy and principal stress rotation on the undrained monotonic behavior of a loose silica sand. Canadian Geotechnical Journal, 2020, 857: 417-430
    [15] Matsuoka H, Yao YP, Sun DA. The cam-clay models revised by the SMP criterion. Soils and Foundations, 1999, 39(1): 81-95 doi: 10.3208/sandf.39.81
    [16] Yao YP, Zhou AN, Lu DC. Extended transformed stress space for geomaterials and its application. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123 doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)
    [17] Yao YP, Wang ND. Transformed stress method for generalizing soil constitutive models. Journal of Engineering Mechanics, 2014, 140(3): 614-629 doi: 10.1061/(ASCE)EM.1943-7889.0000685
    [18] Yao YP, Hou W, Zhou AN. UH model: three-dimensional unified hardening model for overconsolidated clays. Géotechnique, 2009, 59(5): 451-469
    [19] 罗汀, 姚仰平, 侯伟. 土的本构关系. 北京: 人民交通出版社, 2010

    Luo Ting, Yao Yangping, Hou Wei. Soil Constitutive Models. Beijing: China Communication Press, 2010 (in Chinese)
    [20] 姚仰平. UH模型系列研究. 岩土工程学报, 2015, 37(2): 193-217 (Yao Yangping. Advanced UH models for soils. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217 (in Chinese) doi: 10.11779/CJGE201502001

    Yao Yangping. Advanced UH models for soils. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217 (in Chinese)) doi: 10.11779/CJGE201502001
    [21] Casagrande A, Carillo N. Shear failure of anisotropic materials. Journal of Boston Society of Civil Engineers, 1944, 31(4): 74-81
    [22] Arthur JRF, Chua KS, Dunstan T. Induced anisotropy in a sand. Géotechnique, 1977, 27(1): 13-30
    [23] Vaid YP, Sayao A. Proportional loading behaviour of sand under multiaxial stresses. Journal of the Japanese Geotechnical Society Soils & Foundation, 2008, 35(3): 23-29
    [24] Al-Sharrad MA, Gallipoli D, Wheeler SJ. Experimental investigation of evolving anisotropy in unsaturated soils. Géotechnique, 2017, 67(12): 1033-1049
    [25] Zhou H, Liu HL, Zha YH, et al. Influence of stress anisotropy on the cylindrical cavity expansion in undrained elastic-perfectly plastic soil. Science China Technological Sciences, 2018, 61(3): 370-380 doi: 10.1007/s11431-017-9127-7
    [26] Matsuoka H, Nakai T. Stress deformation and Strength characteristics of soil under three different principal stresses. Proceedings of the Japan Society of Civil Engineers, 1974, 232: 59-70
    [27] Graham J, Li E. Comparison of natural and remolded plastic clay. Journal of Geotechnical Engineering, 1985, 111(7): 865-881 doi: 10.1061/(ASCE)0733-9410(1985)111:7(865)
    [28] Henkel DJ. The shear strength of saturated remolded clays//Research Conference on Shear Strength of Cohesive Soils, Colorado, American, 533-554, 1960
    [29] Hettler A, Vardoulakis I. Behaviour of dry sand tested in a large triaxial apparatus. Géotechnique, 1984, 34(2): 183-197
    [30] Drescher A, Vardoulakis I. Geometric softening in triaxial tests on granular material. Géotechnique, 1982, 32(4): 291-304
    [31] Cater JP. Predictions of the nonhomogeneous behaviour of clay in the triaxial test. Géotechnique, 1982, 32(1): 55-58
    [32] Roscoe KH, Thurairajah A, Schofield AN. Yielding of clays in states wetter than critical. Géotechnique, 1963, 13(3): 211-240
    [33] 三浦哲彦, 山本紀之. 粒子破砕領域における砂の降伏曲線について. 土木学会論文報告集, 1982, 1982(326): 83-90

    Miura N, Yamamoto N. On the yield curve of sand in a particle-crushing region. Proceedings of the Japan Society of Civil Engineers, 1982, 1982(326): 83-90 (in Japanese))
    [34] Miura N, Murata H, Yasufuku N. Stress-strain characteristics of sand in a particle-crushing region. Soils and Foundations, 1984, 24(1): 77-89 doi: 10.3208/sandf1972.24.77
    [35] Roscoe KH, Burland JB. On the generalized stress-strain behaviour of ‘wet’ clay. Géotechnique, 1968, 7(2): 535-609
  • 加载中
图(11)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  108
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 录用日期:  2022-04-12
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回