BIFURCATION ANALYSIS OF THERMOCAPILLARY CONVECTION BASED ON POD-GALERKIN REDUCED-ORDER METHOD
-
摘要: 作为流动与传热相互耦合的非线性过程, 热毛细对流有着复杂的转捩过程, 探究流场和温度场随参数变化而发生的分岔现象, 是热毛细对流研究的一个重要课题. 基于本征正交分解的POD-Galerkin降维方法可以通过提取特征模态, 构建低维模型, 实现流场的快速计算. 数值分岔方法可以通过求解含参数动力系统的分岔方程, 直接计算稳定解和分岔点. 探究了将直接数值模拟方法、POD-Galerkin降维方法、数值分岔方法的优势结合, 以提高热毛细对流转捩过程分析效率的可行性. 利用直接数值模拟得到的流场和温度场数据, 构建了不同体积比下, 二维有限长液层热毛细对流的POD-Galerkin低维模型, 在低维模型上采用数值积分及数值分岔方法计算了分岔点, 得到了低维方程的分岔图. 在一定参数范围内, 在低维模型上模拟热毛细对流, 对雷诺数和体积比进行参数外推, 通过与直接数值模拟的结果对比, 验证了低维模型的准确性与鲁棒性. 说明了低维方程可以定性反映原高维系统的流动特性, 而定量方面, 由低维模型和直接数值模拟计算得到的周期解频率的相对误差大约为5%. 验证了利用POD-Galerkin降维方法研究热毛细对流的可行性.Abstract: Thermocapillary convection is driven by surface tension gradient caused by temperature gradient. The flow is subject to nonlinear interactions between convection and heat transfer, so it has complex transition behaviors. It is significant to investigate the flow bifurcation phenomenon as parameters in the governing equations change. The POD-Galerkin reduced-order method is a fast fluid computational method, based on proper orthogonal decomposition and Galerkin projection. The numerical bifurcation method finds the parameter values at which bifurcation exists by computing the asymptotic flow states and bifurcation points directly. In order to tackle flow transition problems in a more efficient way, a combination of direct numerical simulation, POD-Galerkin reduced-order method and numerical bifurcation method is applied to investigate the transition behavior of thermocapillary convection in a liquid layer. The POD reduced-order model of thermocapillary convection in a 2D cavity under different volume ratios is established and its bifurcation diagram is obtained by numerical bifurcation method. The validity of such a model for Reynolds numbers and volume ratios that are different from those for which the model is derived is studied and the possibility of modelling thermocapillary flow in a simple geometry over a range of flow parameters is assessed. Compared with the results obtained by direct numerical simulation, the accuracy and robustness of the low-order model are verified. The results show that the reduced-order model reflects qualitatively similar flow characteristics to the original high-order system, and quantitively, the relative error of frequency of periodic solution of the reduced-order model to that obtained by the direct numerical simulation is around 5%. Hence, the feasibility of the POD-Galerkin reduced-order method on thermocapillary convection is confirmed.
-
表 1 直接数值模拟算法验证
Table 1. Verification of DNS method
Vr = 1.00 Recri_1 errrel_1/% Recri_2 errrel_2/% 45×15 (uniform) 1930 1.03 4350 13.35 60×20 (non-uniform q = 1) 1975 1.28 4600 8.37 60×20 (non-uniform q = 2) 1925 1.28 5050 0.60 benchmark 1950 — 5020 — 表 2 各体积比下的临界雷诺数
Table 2. Critical Reynolds number under different volume ratios
Vr Rec1 Rec2 0.95 2450 7250 1.00 1925 5050 1.05 1650 3550 表 3 不同模态数(n)下的能量占比(Re = 3500, Vr = 1.00)
Table 3. The accumulative energy contribution of the first n POD eigenmodes (Re = 3500, Vr = 1.00)
n Energy/% 4 99.17666 6 99.89763 8 99.98758 10 99.99704 12 99.99893 14 99.99956 表 4 低维方程得到的温度振荡频率与DNS结果对比(Vr = 1.00)
Table 4. The comparison of temperature oscillation frequency obtained by DNS and low-order model
Re fT_POD FT_DNS Error/% 2500 3.0096 2.8728 4.7619 3000 6.4151 6.2264 3.0306 4000 7.2970 7.3998 1.3892 4500 3.9053 4.1420 5.7146 表 5 利用低维方程与DNS计算的临界Re对比
Table 5. The comparison of the critical Reynolds number obtained by DNS and reduced-order model
Method Vr = 0.95 Vr = 1.00 Vr = 1.05 Rec1 Rec2 Rec1 Rec2 Rec1 Rec2 POD 2020 6520 1620 5020 1420 3420 DNS 2450 7250 1925 5050 1650 3550 error/% 17.55 10.07 15.84 0.59 13.94 3.66 表 6 低维方程周期解频率与DNS结果对比(Vr = 1.00)
Table 6. The comparison of the frequency of the periodic solution obtained by DNS and reduced-order model (Vr = 1.00)
ReDNS fDNS RePOD fPOD 2000 2.5937 2004 2.6546 2500 2.8728 2504 3.0102 3000 3.0233 3004 3.1878 3500 3.3259 3504 3.3795 4000 3.7516 4004 3.6311 4500 4.1611 4504 3.8926 5000 4.4706 5004 4.1408 -
[1] Lappa M. Thermal Convection, Chichester. John Wiley & Sons, Ltd., 2009 [2] Hu WR, Tang ZM, Li K. Thermocapillary convection in floating zones. Applied Mechanics Reviews, 2008, 61(1): 010803 doi: 10.1115/1.2820798 [3] Duan L, Yin YL, Wang J, et al. Thermocapillary convection space experiment on the SJ-10 recoverable satellite. Journal of Visualized Experiments, 2020, 157: 59998 [4] Imaishi N, Ermakov MK, Shi WY. Effects of pr and pool curvature on thermocapillary flow instabilities in annular pool. International Journal of Heat and Mass Transfer, 2020, 149: 119103 doi: 10.1016/j.ijheatmasstransfer.2019.119103 [5] Mo DM, Zhang L, Ruan DF, et al. Aspect ratio dependence of thermocapillary flow instability of moderate-Prandtl number fluid in annular pools heated from inner cylinder. Microgravity Science and Technology, 2021, 33(6): 66 doi: 10.1007/s12217-021-09909-0 [6] Chen EH, Xu F. Transient thermocapillary convection flows in a rectangular cavity with an evenly heated lateral wall. Physics of Fluids, 2021, 33(1): 013602 doi: 10.1063/5.0034650 [7] Schwabe D, Benz S. Thermocapillary flow instabilities in an annulus under microgravity—Results of the experiment magia. Advances in Space Research, 2002, 29(4): 629-638 doi: 10.1016/S0273-1177(01)00654-8 [8] Bucchignani E, Mansutti D. Horizontal thermocapillary convection of succinonitrile: steady state, instabilities, and transition to chaos. Physical Review E, 2004, 69(5): 056319 doi: 10.1103/PhysRevE.69.056319 [9] Li K, Xun B, Hu WR. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent. Physics of Fluids, 2016, 28(5): 054106 doi: 10.1063/1.4948400 [10] Jiang H, Duan L, Kang Q. A peculiar bifurcation transition route of thermocapillary convection in rectangular liquid layers. Experimental Thermal and Fluid Science, 2017, 88: 8-15 doi: 10.1016/j.expthermflusci.2017.03.015 [11] Chow SN, Hale JK. Methods of Bifurcation Theory. New York Berlin Heidelberg: Springer, 1982 [12] Seydel R. Practical Bifurcation and Stability Analysis. New York: Springer, 2010 [13] Marta N, Juan S. Continuation of bifurcations of periodic orbits for large-scale systems. SIAM Journal on Applied Dynamical Systems, 2015, 14(2): 674-698 doi: 10.1137/140981010 [14] Dijkstra HA, Wubs FW, Cliffe AK, et al. Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation. Communications in Computational Physics, 2014, 15(1): 1-45 doi: 10.4208/cicp.240912.180613a [15] Juan SU, Marta N. Stationary flows and periodic dynamics of binary mixtures in tall laterally heated slots//Gelfgat A. Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Cham: Springer International Publishing, 2019: 171-216 [16] Juan SU, Marta N. Continuation of double Hopf points in thermal convection of rotating fluid spheres. SIAM Journal on Applied Dynamical Systems, 2021, 20(1): 208-231 doi: 10.1137/20M1333961 [17] Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656: 5-28 doi: 10.1017/S0022112010001217 [18] Lumley JL. The structure of inhomogeneous turbulent flows//Yaglom AM, Tartarsky VI, eds. Atmospheric Turbulence and Radio Wave Propagation [19] 寇家庆. 非定常气动力建模与流场降阶方法研究. [硕士论文]. 西安: 西北工业大学, 2018Kou Jiaqing. Reduced-order modeling methods for unsteady aerodynamics and fluid flows. [Master's Thesis]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese)) [20] Podvin B, Quéré PL. Low-order models for the flow in a differentially heated cavity. Physics of Fluids, 2001, 13(11): 3204-3214 doi: 10.1063/1.1408919 [21] Ma X, Karniadakis GE. A low-dimensional model for simulating three-dimensional cylinder flow. Journal of Fluid Mechanics, 2002, 458: 181-190 doi: 10.1017/S0022112002007991 [22] Cai WH, Ma HH, Wang Y, et al. Development of pod reduced-order model and its closure scheme for 2D Rayleigh–Bénard convection. Applied Mathematical Modelling, 2019, 66: 562-575 doi: 10.1016/j.apm.2018.09.031 [23] 冯俞楷, 杜小泽, 杨立军. 非稳态导热基于温度梯度的本征正交分解降维方法. 中国科学: 技术科学, 2018, 48(1): 39-47Feng Yukai, Du Xiaoze, Yang Lijun. Extrapolating POD reduced-order model based on temperature gradient for unsteady heat conduction. Sci Sin Tech, 2018, 48: 39-47 (in Chinese) [24] Jing CJ, Henry D, Hadid HB, et al. Low-order dynamical model for low-Prandtl number fluid flow in a laterally heated cavity. Physics of Fluids, 2003, 15(8): 2152-2162 doi: 10.1063/1.1577119 [25] Dijkstra HA. On the structure of cellular solutions in Rayleigh–Bénard–Marangoni flows in small-aspect-ratio containers. Journal of Fluid Mechanics, 1992, 243: 73-102 doi: 10.1017/S0022112092002647 [26] Xu JY, Zebib A. Oscillatory two- and three-dimensional thermocapillary convection. Journal of Fluid Mechanics, 1998, 364: 187-209 doi: 10.1017/S0022112098001232 [27] Kalb VL, Deane AE. An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models. Physics of Fluids, 2007, 19(5): 054106 doi: 10.1063/1.2723149 [28] Sirisup S, Karniadakis GE. A spectral viscosity method for correcting the long-term behavior of pod models. Journal of Computational Physics, 2004, 194(1): 92-116 doi: 10.1016/j.jcp.2003.08.021 [29] Bailon-Cuba J, Schumacher J. Low-dimensional model of turbulent Rayleigh-Bénard convection in a cartesian cell with square domain. Physics of Fluids, 2011, 23(7): 077101 doi: 10.1063/1.3610395 [30] Wang Y, Ma HH, Cai WH, et al. A POD-Galerkin reduced-order model for two-dimensional Rayleigh-Bénard convection with viscoelastic fluid. International Communications in Heat and Mass Transfer, 2020, 117: 104747 doi: 10.1016/j.icheatmasstransfer.2020.104747 -