AUTO-IGNITION TABULATED METHOD FOR SUPERSONIC COMBUSTION AT HIGH MACH NUMBER
-
摘要: 超燃冲压发动机燃烧室工作在高马赫数工况时, 入口来流空气的总焓非常高, 自点火在高焓条件下成为维持火焰稳定的重要物理化学过程. 本文借鉴火焰面/进度变量模型的降维思路, 发展了一种基于化学动力学的自点火建表方法. 通过定义混合分数和进度变量将复杂多维的化学反应降维, 并成功将数据库方法结合到现有的大涡模拟求解器中. 经过测试和验证, 该方法初步具备对超声速自点火燃烧进行仿真描述的能力. 针对自点火诱导的超声速燃烧问题开展数值模拟, 该方法通过查表的方式有效降低了化学反应求解过程中的计算量. 在采用详细化学反应机理时能够准确地再现自点火行为和火焰结构, 并且预测的温度和重要组分分布与实验吻合较好.Abstract: When the scramjet combustor works under high Mach number conditions, the total enthalpy of the inlet air is very high, and auto-ignition becomes an important physical and chemical process to maintain flame stability. This paper develops an auto-ignition tabulated method based on chemical kinetics, referring to the dimensions reduction means of the flamelet/progress variable model. The complex and multi-dimensional chemical reactions is reduced by defining the mixture fraction and progress variables, and the database method is successfully integrated into the existing large eddy simulation solver. After testing and verification, the method possesses the ability to simulate and describe the supersonic auto-ignition and flame. Numerical simulation is carried out for supersonic combustion induced by auto-ignition in two configuration. This method effectively reduces the amount of calculation in the process of solving chemical reactions by looking up the database. When the detailed chemical reaction mechanism is used, the auto-ignition behavior and flame structure can be accurately reproduced, and the predicted temperature and the distribution of important components are in good agreement with the experiment.
-
Key words:
- auto-ignition /
- supersonic combustion /
- tabulated method /
- high enthalpy
-
表 1 初始参数的范围和取值
Table 1. Range and value of control parameters
Parameter Range N Value Z 0~1 35 $ \lg ({i_Z} + 1)/\lg 16 \times 0.0283 $, $ 1 \leqslant {i_Z} \leqslant 15 $ $0.0283 + {2^{(i - 15)/2}}/{2^{10}} \times 0.9727,$ $ 16 \leqslant {i_Z} \leqslant 35 $ p/MPa 0.05~1 20 0.05ip T0/K 850~1550 30 850 + 20iT 表 2 Burrows–Kurkov实验射流和来流参数
Table 2. Jet and inflow parameters in Burrows–Kurkov experiment
Parameter Jet Inflow Ma 2.4 1 T/K 1237.9 261.7 p/Pa 96000.0 114465.5 $ {Y_{\rm{O_2}}} $ 0.258 0.0 $ {Y_{\rm{H_2}O}} $ 0.256 0.0 $ {Y_{\rm{H_2}}} $ 0.0 1.0 $ {Y_{\rm{N_2}}} $ 0.486 0.0 Δ/mm 0.0075 0.0075 -
[1] 张灿, 林旭斌, 刘都群等. 2019年国外高超声速飞行器技术发展综述. 飞航导弹, 2020, 1: 16-20 (Zhang Can, Lin Xubin, Liu Duqun, et al. A review of the development of foreign hypersonic vehicle technology in 2019. Aerodynamic Missile Journal, 2020, 1: 16-20 (in Chinese)Zhang Can, Lin Xubin, Liu Duqun, et al. A review of the development of foreign hypersonic vehicle technology in 2019. Aerodynamic Missile Journal, 2020, (01): 16-20 (in Chinese) [2] 王振国, 梁剑寒, 丁猛等. 高超声速飞行器动力系统研究进展. 力学进展, 2009, 39(6): 716-739 (Wang Zhenguo, Liang Jianhan, Ding Meng, et al. Research progress of hypersonic vehicle power system. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.06.011Wang Zhenguo, Liang Jianhan, Ding Meng, et al. Research progress of hypersonic vehicle power system. Advances in Mechanics, 2009, 39 (6): 716-739 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.06.011 [3] Choubey G, Yuvarajan D, Huang W, et al. Recent research progress on transverse injection technique for scramjet applications-a brief review. International Journal of Hydrogen Energy, 2020, 45(51): 27806-27827 doi: 10.1016/j.ijhydene.2020.07.098 [4] Zhang JC, Sun MB, Wang ZG, et al. Stabilization mechanisms of lifted flames in a supersonic stepped-wall jet combustor. Journal of Zhejiang University Science A, 2021, 22(4): 314-330 doi: 10.1631/jzus.A2000087 [5] Liu CY, Wang N, Yang K, ey al. Large eddy simulation of a supersonic lifted jet flame in the high-enthalpy coflows. Acta Astronautica, 2021, 183: 233-243 doi: 10.1016/j.actaastro.2021.03.031 [6] Liu B, Xu JC, Qin F, et al. Influence of hydrogen equivalence ratios on supersonic combustion based on large eddy simulations. International Journal of Hydrogen Energy, 2020, 45(19): 11341-11349 [7] Cheng T, Wehrmeyer J, Pitz R, et al. Finite-rate chemistry effects in a Mach 2 reacting flow//27th Joint Propulsion Conference, 1991 [8] Boivin P, Dauptain A, Jiménez C, et al. Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. Combustion and Flame, 2012, 159(4): 1779-1790 doi: 10.1016/j.combustflame.2011.12.012 [9] Moule Y, Sabelnikov V, Mura A. Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets. Combustion and Flame, 2014, 161(10): 2647-2668 doi: 10.1016/j.combustflame.2014.04.011 [10] Bouheraoua L, Domingo P, Ribert G. Large-eddy simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base. Combustion and Flame, 2017, 179: 199-218 doi: 10.1016/j.combustflame.2017.01.020 [11] Zhao MJ, Li QL, Ye TH. Investigation of the mixing characteristics in a transverse hydrogen injection combustor with an inlet compression ramp. Acta Astronautica, 2019, 160: 479-488 [12] Ben-Yakar A, Mungal MG, Hanson RK. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Physics of Fluids, 2006, 18(2): 1154-105 [13] Won S, Jeung I, Parent B, et al. Numerical investigation of transverse hydrogen jet into supersonic crossflow using detached-eddy simulation. AIAA Journal, 2010, 48(6): 1047-1058 doi: 10.2514/1.41165 [14] Liu CY, Yu JF, Wang ZG, et al. Characteristics of hydrogen jet combustion in a high-enthalpy supersonic crossflow. Physics of Fluids, 2019, 31(4): 046105 doi: 10.1063/1.5084751 [15] Schulz O, Piccoli E, Felden A, et al. Autoignition-cascade in the windward mixing layer of a premixed jet in hot vitiated crossflow. Combustion and Flame, 2019, 201(5): 215-233 [16] Goldfeld MA. Processes of fuel self-ignition and flame stabilization with transverse hydrogen fuel injection into a supersonic combustion chamber. Thermophysics and Aeromechanics, 2020, 27(4): 573-584 doi: 10.1134/S0869864320040101 [17] 范周琴, 孙明波, 刘卫东. 湍流燃烧的概率密度函数输运方程模型研究. 飞航导弹, 2010, 5: 90-95 (Fan Zhouqin, Sun Mingbo, Liu Weidong. Study on transport equation model of probability density function of turbulent combustion. Aerodynamic Missile Journal, 2010, 5: 90-95 (in Chinese)17. Fan Zhouqin, Sun Mingbo, Liu Weidong. Study on Transport Equation Model of Probability Density Function of Turbulent Combustion. Aerodynamic Missile Journal, 2010, (05): 90-95 (in Chinese) [18] 汪洪波. 超声速气流中凹腔稳定的射流燃烧模式及振荡机制研究. [博士论文]. 长沙: 国防科学技术大学, 2012Wang Hongbo. Stable jet combustion mode and oscillation mechanism of concave cavity in supersonic airflow. [PhD Thesis]. Changsha: National University of Defense Technology, 2012 (in Chinese) [19] Baurle R, Hsu A, Hassan H, et al. Assumed and evolution probability density functions in supersonic turbulent combustion calculations. Journal of Propulsion and Power, 1995, 11(6): 1132-1138 doi: 10.2514/3.23951 [20] Gerlinger P. Investigation of an assumed pdf approach for finite-rate Chemistry. Combustion Science and Technology, 2010, 175(5): 841-872 [21] Maas U, Pope S. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Symposium on Combustion, 1992, 24(1): 103-112 doi: 10.1016/S0082-0784(06)80017-2 [22] Gicquel O, Darabiha N, Thevenin D, et al. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 2000, 28(2): 1901-1908 doi: 10.1016/S0082-0784(00)80594-9 [23] Knop V, Michel JB, Colin O. On the use of a tabulation approach to model auto-ignition during flame propagation in SI engines. Applied Energy, 2011, 88(12): 4968-4979 doi: 10.1016/j.apenergy.2011.06.047 [24] Knop V, Kircher H, Jay S, et al. Quantitative pollutant modelling: an essential prerequisite for diesel HCCI and LTC engine design. Oil & Gas Science & Technology, 2008, 63(4): 495-515 [25] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 1984, 10(3): 319-339 doi: 10.1016/0360-1285(84)90114-X [26] 孙明波, 范周琴, 梁剑寒等. 部分预混超声速燃烧火焰面模式研究综述. 力学进展, 2010, 6(6): 634-641 (Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. A review of the research on the flame surface mode of partial premixed supersonic combustion. Advances in Mechanics, 2010, 6(6): 634-641 (in Chinese) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. A review of the research on the flame surface mode of partial premixed supersonic combustion. Advances in Mechanics, 2010, 6: 634-641 (in Chinese) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127 [27] Shan FL, Zhang DR, Hou LY, et al. An improved flamelet/progress variable modeling for supersonic combustion. International Journal of Hydrogen Energy, 2020, 46(5): 4485-4495 [28] Mrema HF, Candler GV. Large eddy simulation of supersonic combustion using the flamelet/progress-variable approach and the evolution-variable manifold approach//AIAA Scitech 2019 Forum, 2019 [29] Liu CY, Sun MB, Wang HB, et al. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor. Aerospace Science and Technology, 2020, 106: 106186 doi: 10.1016/j.ast.2020.106186 [30] 刘瑜. 化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用. [硕士论文]. 长沙: 国防科学技术大学, 2008Liu Yu. Research on computational methods of chemical nonequilibrium flow and its application in simulation of shock-induced combustion phenomenon. [Master Thesis]. Changsha: National University of Defense Technology, 2008 (in Chinese) [31] Gamba M, Mungal MG. Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow. Journal of Fluid Mechanics, 2015, 780: 226-273 doi: 10.1017/jfm.2015.454 [32] Burrows MC, Kurkov AP. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream. AIAA Journal, 1973, 11(9): 1217-1218 doi: 10.2514/3.50564 -