EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高马赫数下超声速燃烧的自点火查表方法

张锦成 王振国 孙明波 汪洪波 王亚男 刘朝阳

张锦成, 王振国, 孙明波, 汪洪波, 王亚男, 刘朝阳. 高马赫数下超声速燃烧的自点火查表方法. 力学学报, 2022, 54(6): 1548-1556 doi: 10.6052/0459-1879-21-635
引用本文: 张锦成, 王振国, 孙明波, 汪洪波, 王亚男, 刘朝阳. 高马赫数下超声速燃烧的自点火查表方法. 力学学报, 2022, 54(6): 1548-1556 doi: 10.6052/0459-1879-21-635
Zhang Jincheng, Wang Zhenguo, Sun Mingbo, Wang Hongbo, Wang Yanan, Liu Chaoyang. Auto-ignition tabulated method for supersonic combustion at high Mach number. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1548-1556 doi: 10.6052/0459-1879-21-635
Citation: Zhang Jincheng, Wang Zhenguo, Sun Mingbo, Wang Hongbo, Wang Yanan, Liu Chaoyang. Auto-ignition tabulated method for supersonic combustion at high Mach number. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1548-1556 doi: 10.6052/0459-1879-21-635

高马赫数下超声速燃烧的自点火查表方法

doi: 10.6052/0459-1879-21-635
基金项目: 国家自然科学基金(12002373, 12002381)和湖南省自然科学基金(2021JJ40656)项目资助
详细信息
    作者简介:

    汪洪波, 研究员, 主要研究方向: 高超声速推进技术. E-mail: whbwatch@nudt.edu.cn

  • 中图分类号: V231.2

AUTO-IGNITION TABULATED METHOD FOR SUPERSONIC COMBUSTION AT HIGH MACH NUMBER

  • 摘要: 超燃冲压发动机燃烧室工作在高马赫数工况时, 入口来流空气的总焓非常高, 自点火在高焓条件下成为维持火焰稳定的重要物理化学过程. 本文借鉴火焰面/进度变量模型的降维思路, 发展了一种基于化学动力学的自点火建表方法. 通过定义混合分数和进度变量将复杂多维的化学反应降维, 并成功将数据库方法结合到现有的大涡模拟求解器中. 经过测试和验证, 该方法初步具备对超声速自点火燃烧进行仿真描述的能力. 针对自点火诱导的超声速燃烧问题开展数值模拟, 该方法通过查表的方式有效降低了化学反应求解过程中的计算量. 在采用详细化学反应机理时能够准确地再现自点火行为和火焰结构, 并且预测的温度和重要组分分布与实验吻合较好.

     

  • 图  1  化学反应动力学计算出的温度和H2曲线

    Figure  1.  Temperature and H2 curves calculated by chemical reaction kinetics

    图  2  H2O的生成率和反应释热率

    Figure  2.  Generation rate of H2O and reaction heat release rate

    图  3  进度变量采样点分布

    Figure  3.  Distribution of value points for progress variables

    图  4  OH基质量分数和温度随进度变量的变化

    Figure  4.  Variation of OH mass fraction and temperature with progress variables

    图  5  H2反应速率和进度变量生成率变化曲线

    Figure  5.  H2 generation rate and progress variable generation rate curve

    图  6  数据库查表插值示意图

    Figure  6.  Schematic diagram of lookup and interpolation from the auto-ignition database

    图  7  混合分数Z守恒的验证

    Figure  7.  Verification of mixture fraction Z conservation

    图  8  组分H2和H2O质量分数在反应中的变化

    Figure  8.  Variation of H2 and H2O mass fraction in the reaction

    图  9  不同初始温度下温度随时间变化

    Figure  9.  Temperature variation with time at different initial temperatures

    图  10  Gamba实验构型计算域示意图 (单位: mm)

    Figure  10.  Schematic diagram of the computational domain of the Gamba’s experiments (unit: mm)

    图  11  中心截面上OH分布云图

    Figure  11.  OH distribution on the central section

    图  12  Burrows–Kurkov实验构型计算域示意图 (单位: mm)

    Figure  12.  Schematic diagram of the computational domain of the Burrows–Kurkov experimental configuration (unit: mm)

    图  13  中心截面上温度和OH基的分布

    Figure  13.  Distributions of temperature and mass fration of OH at the central slice

    图  14  出口位置(x = 356 mm)总温剖面

    Figure  14.  Total temperature profile at the outlet (x = 356 mm)

    表  1  初始参数的范围和取值

    Table  1.   Range and value of control parameters

    ParameterRangeNValue
    Z0~135$ \lg ({i_Z} + 1)/\lg 16 \times 0.0283 $, $ 1 \leqslant {i_Z} \leqslant 15 $
    $0.0283 + {2^{(i - 15)/2}}/{2^{10}} \times 0.9727,$ $ 16 \leqslant {i_Z} \leqslant 35 $
    p/MPa0.05~1200.05ip
    T0/K850~155030850 + 20iT
    下载: 导出CSV

    表  2  Burrows–Kurkov实验射流和来流参数

    Table  2.   Jet and inflow parameters in Burrows–Kurkov experiment

    ParameterJetInflow
    Ma 2.4 1
    T/K 1237.9 261.7
    p/Pa 96000.0 114465.5
    $ {Y_{\rm{O_2}}} $ 0.258 0.0
    $ {Y_{\rm{H_2}O}} $ 0.256 0.0
    $ {Y_{\rm{H_2}}} $ 0.0 1.0
    $ {Y_{\rm{N_2}}} $ 0.486 0.0
    Δ/mm 0.0075 0.0075
    下载: 导出CSV
  • [1] 张灿, 林旭斌, 刘都群等. 2019年国外高超声速飞行器技术发展综述. 飞航导弹, 2020, 1: 16-20 (Zhang Can, Lin Xubin, Liu Duqun, et al. A review of the development of foreign hypersonic vehicle technology in 2019. Aerodynamic Missile Journal, 2020, 1: 16-20 (in Chinese)

    Zhang Can, Lin Xubin, Liu Duqun, et al. A review of the development of foreign hypersonic vehicle technology in 2019. Aerodynamic Missile Journal, 2020, (01): 16-20 (in Chinese)
    [2] 王振国, 梁剑寒, 丁猛等. 高超声速飞行器动力系统研究进展. 力学进展, 2009, 39(6): 716-739 (Wang Zhenguo, Liang Jianhan, Ding Meng, et al. Research progress of hypersonic vehicle power system. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.06.011

    Wang Zhenguo, Liang Jianhan, Ding Meng, et al. Research progress of hypersonic vehicle power system. Advances in Mechanics, 2009, 39 (6): 716-739 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.06.011
    [3] Choubey G, Yuvarajan D, Huang W, et al. Recent research progress on transverse injection technique for scramjet applications-a brief review. International Journal of Hydrogen Energy, 2020, 45(51): 27806-27827 doi: 10.1016/j.ijhydene.2020.07.098
    [4] Zhang JC, Sun MB, Wang ZG, et al. Stabilization mechanisms of lifted flames in a supersonic stepped-wall jet combustor. Journal of Zhejiang University Science A, 2021, 22(4): 314-330 doi: 10.1631/jzus.A2000087
    [5] Liu CY, Wang N, Yang K, ey al. Large eddy simulation of a supersonic lifted jet flame in the high-enthalpy coflows. Acta Astronautica, 2021, 183: 233-243 doi: 10.1016/j.actaastro.2021.03.031
    [6] Liu B, Xu JC, Qin F, et al. Influence of hydrogen equivalence ratios on supersonic combustion based on large eddy simulations. International Journal of Hydrogen Energy, 2020, 45(19): 11341-11349
    [7] Cheng T, Wehrmeyer J, Pitz R, et al. Finite-rate chemistry effects in a Mach 2 reacting flow//27th Joint Propulsion Conference, 1991
    [8] Boivin P, Dauptain A, Jiménez C, et al. Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. Combustion and Flame, 2012, 159(4): 1779-1790 doi: 10.1016/j.combustflame.2011.12.012
    [9] Moule Y, Sabelnikov V, Mura A. Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets. Combustion and Flame, 2014, 161(10): 2647-2668 doi: 10.1016/j.combustflame.2014.04.011
    [10] Bouheraoua L, Domingo P, Ribert G. Large-eddy simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base. Combustion and Flame, 2017, 179: 199-218 doi: 10.1016/j.combustflame.2017.01.020
    [11] Zhao MJ, Li QL, Ye TH. Investigation of the mixing characteristics in a transverse hydrogen injection combustor with an inlet compression ramp. Acta Astronautica, 2019, 160: 479-488
    [12] Ben-Yakar A, Mungal MG, Hanson RK. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Physics of Fluids, 2006, 18(2): 1154-105
    [13] Won S, Jeung I, Parent B, et al. Numerical investigation of transverse hydrogen jet into supersonic crossflow using detached-eddy simulation. AIAA Journal, 2010, 48(6): 1047-1058 doi: 10.2514/1.41165
    [14] Liu CY, Yu JF, Wang ZG, et al. Characteristics of hydrogen jet combustion in a high-enthalpy supersonic crossflow. Physics of Fluids, 2019, 31(4): 046105 doi: 10.1063/1.5084751
    [15] Schulz O, Piccoli E, Felden A, et al. Autoignition-cascade in the windward mixing layer of a premixed jet in hot vitiated crossflow. Combustion and Flame, 2019, 201(5): 215-233
    [16] Goldfeld MA. Processes of fuel self-ignition and flame stabilization with transverse hydrogen fuel injection into a supersonic combustion chamber. Thermophysics and Aeromechanics, 2020, 27(4): 573-584 doi: 10.1134/S0869864320040101
    [17] 范周琴, 孙明波, 刘卫东. 湍流燃烧的概率密度函数输运方程模型研究. 飞航导弹, 2010, 5: 90-95 (Fan Zhouqin, Sun Mingbo, Liu Weidong. Study on transport equation model of probability density function of turbulent combustion. Aerodynamic Missile Journal, 2010, 5: 90-95 (in Chinese)

    17. Fan Zhouqin, Sun Mingbo, Liu Weidong. Study on Transport Equation Model of Probability Density Function of Turbulent Combustion. Aerodynamic Missile Journal, 2010, (05): 90-95 (in Chinese)
    [18] 汪洪波. 超声速气流中凹腔稳定的射流燃烧模式及振荡机制研究. [博士论文]. 长沙: 国防科学技术大学, 2012

    Wang Hongbo. Stable jet combustion mode and oscillation mechanism of concave cavity in supersonic airflow. [PhD Thesis]. Changsha: National University of Defense Technology, 2012 (in Chinese)
    [19] Baurle R, Hsu A, Hassan H, et al. Assumed and evolution probability density functions in supersonic turbulent combustion calculations. Journal of Propulsion and Power, 1995, 11(6): 1132-1138 doi: 10.2514/3.23951
    [20] Gerlinger P. Investigation of an assumed pdf approach for finite-rate Chemistry. Combustion Science and Technology, 2010, 175(5): 841-872
    [21] Maas U, Pope S. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Symposium on Combustion, 1992, 24(1): 103-112 doi: 10.1016/S0082-0784(06)80017-2
    [22] Gicquel O, Darabiha N, Thevenin D, et al. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 2000, 28(2): 1901-1908 doi: 10.1016/S0082-0784(00)80594-9
    [23] Knop V, Michel JB, Colin O. On the use of a tabulation approach to model auto-ignition during flame propagation in SI engines. Applied Energy, 2011, 88(12): 4968-4979 doi: 10.1016/j.apenergy.2011.06.047
    [24] Knop V, Kircher H, Jay S, et al. Quantitative pollutant modelling: an essential prerequisite for diesel HCCI and LTC engine design. Oil & Gas Science & Technology, 2008, 63(4): 495-515
    [25] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 1984, 10(3): 319-339 doi: 10.1016/0360-1285(84)90114-X
    [26] 孙明波, 范周琴, 梁剑寒等. 部分预混超声速燃烧火焰面模式研究综述. 力学进展, 2010, 6(6): 634-641 (Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. A review of the research on the flame surface mode of partial premixed supersonic combustion. Advances in Mechanics, 2010, 6(6): 634-641 (in Chinese) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127

    Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. A review of the research on the flame surface mode of partial premixed supersonic combustion. Advances in Mechanics, 2010, 6: 634-641 (in Chinese) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127
    [27] Shan FL, Zhang DR, Hou LY, et al. An improved flamelet/progress variable modeling for supersonic combustion. International Journal of Hydrogen Energy, 2020, 46(5): 4485-4495
    [28] Mrema HF, Candler GV. Large eddy simulation of supersonic combustion using the flamelet/progress-variable approach and the evolution-variable manifold approach//AIAA Scitech 2019 Forum, 2019
    [29] Liu CY, Sun MB, Wang HB, et al. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor. Aerospace Science and Technology, 2020, 106: 106186 doi: 10.1016/j.ast.2020.106186
    [30] 刘瑜. 化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用. [硕士论文]. 长沙: 国防科学技术大学, 2008

    Liu Yu. Research on computational methods of chemical nonequilibrium flow and its application in simulation of shock-induced combustion phenomenon. [Master Thesis]. Changsha: National University of Defense Technology, 2008 (in Chinese)
    [31] Gamba M, Mungal MG. Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow. Journal of Fluid Mechanics, 2015, 780: 226-273 doi: 10.1017/jfm.2015.454
    [32] Burrows MC, Kurkov AP. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream. AIAA Journal, 1973, 11(9): 1217-1218 doi: 10.2514/3.50564
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  142
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 录用日期:  2022-04-13
  • 网络出版日期:  2022-04-14
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回