EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

片状颗粒间液桥力变化规律的计算研究

刘奉银 姜景希 李栋栋

刘奉银, 姜景希, 李栋栋. 片状颗粒间液桥力变化规律的计算研究. 力学学报, 2022, 54(6): 1660-1668 doi: 10.6052/0459-1879-21-628
引用本文: 刘奉银, 姜景希, 李栋栋. 片状颗粒间液桥力变化规律的计算研究. 力学学报, 2022, 54(6): 1660-1668 doi: 10.6052/0459-1879-21-628
Liu Fengyin, Jiang Jingxi, Li Dongdong. Study on the evolution of liquid bridge force between flaky particles. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1660-1668 doi: 10.6052/0459-1879-21-628
Citation: Liu Fengyin, Jiang Jingxi, Li Dongdong. Study on the evolution of liquid bridge force between flaky particles. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1660-1668 doi: 10.6052/0459-1879-21-628

片状颗粒间液桥力变化规律的计算研究

doi: 10.6052/0459-1879-21-628
基金项目: 国家自然科学基金(12072260, 51679198)和西北旱区生态水利国家重点实验室项目(QZNX-2019-07)资助
详细信息
    作者简介:

    刘奉银, 教授, 主要研究方向: 颗粒力学、非饱和土力学. E-mail: liufy@xaut.edu.cn

  • 中图分类号: TU43

STUDY ON THE EVOLUTION OF LIQUID BRIDGE FORCE BETWEEN FLAKY PARTICLES

  • 摘要: 研究颗粒间液桥力有助于揭示非饱和土持水特性的内在机理. 为探究片状颗粒间液桥力演化规律, 从细观尺度研究非饱和土的水力特性机理, 使用Surface Evolver软件在两平行的片状颗粒间构建出三维液桥模型, 分析了液桥拉伸过程中接触角、液桥体积、分离距离以及固液接触线钉扎效应等对液桥力变化规律的影响. 基于圆弧假定, 计算相应条件下液桥力以及接触半径的大小, 并与上述模拟结果进行对比分析. 结果表明: 片状颗粒间液桥力随液桥体积增大而递增, 随分离距离的增大而递减, 随固液接触角的增大先增后减或一直递减; 液桥体积一定时, 在钉扎状态下, 其液桥力随着分离距离的增大迅速递增达到峰值, 而后逐渐降低; Surface Evolver模拟与液桥界面环形近似的计算结果相对比, 当固液接触角较大时(θ = 60°和θ = 80°), 二者相对误差在6%以内, 而当固液接触角减小到30°及以下时, 相对误差随之增大, 且颗粒间分离距离越大, 相对误差越大.

     

  • 图  1  一对片状颗粒间液桥几何参数

    Figure  1.  Geometric parameters of liquid bridge between a pair of flaky particles

    图  2  片状颗粒-液桥三维重构模型

    Figure  2.  Three-dimensional reconstruction model of plate-particle and liquid bridge

    图  3  固液接触角θ = 30°时, 片状颗粒间液桥力与分离距离和液桥体积的变化规律

    Figure  3.  The evolution of the liquid bridge force between the flake particles, the separation distance and the volume of the liquid bridge, when the solid-liquid contact angle θ = 30°

    图  4  固定液桥体积分别为(a) 0.1 μL; (b) 0.5 μL; (c) 1.0 μL时的一系列分离距离下的液桥力随固液接触角的变化规律

    Figure  4.  The capillary force evolution of a fixed liquid bridge with a fixed volume of (a) 0.1 μL (b) 0.5 μL and (c) 1.0 μL at a series of separation distances with solid-liquid contact angle was studied

    图  5  V = 2.0 μL, θ = 0°时液桥拉伸过程中的形态演变

    Figure  5.  Morphology evolution of liquid bridge during stretching at V = 2.0 μL, θ = 0°

    图  6  V = 2.0 μL, θ = 0°时液桥拉伸过程中几何参数变化

    Figure  6.  Geometric parameters change in liquid bridge stretching process with V = 2.0 μL, θ = 0°

    图  7  不同条件下片状颗粒间液桥力随分离距离的变化规律

    Figure  7.  The evolution of liquid-bridge capillary force with separation distance under different conditions

    图  8  V = 0.1 μL时颗粒间液桥损失率随伸长率的关系

    Figure  8.  Relationship between loss ratio of liquid bridge between particles and elongation at 0.1 μL

    图  9  液桥钉扎和自由滑移下液桥力的变化

    Figure  9.  Evolution of liquid-bridge forces under hydraulic bridge nailing and free slip

    图  10  恒定液桥体积为1.0 μL, 不同固-液接触角下其(a)液桥力的数值解和环形近似解的对比及其(b)误差分析

    Figure  10.  Comparison of (a) numerical solution and annular approximate solution and (b) its error analysis when the constant liquid bridge volume is 1.0 μL, the liquid bridge force at different solid-liquid contact angles

    表  1  方案设计与材料参数

    Table  1.   Experimental design and the parameters of material

    NumberV/μLθ/(°)Liquid
    10.10°, 15°, 30°, 60°, 80°water (0.072 N/m)
    20.50°, 15°, 30°, 60°, 80°water (0.072 N/m)
    31.00°, 15°, 30°, 60°, 80°water (0.072 N/m)
    44.00°, 15°, 30°, 60°, 80°water (0.072 N/m)
    下载: 导出CSV
  • [1] 卢宁, William JL. 非饱和土力学. 韦昌富译. 北京: 高等教育出版社, 2012

    (Lu Ning, William JL. Soil Mechanics for Unsaturated Soils. Wei Changfu trans. Beijing: Higher Education Press, 2012 (in Chinese)
    [2] Fredlund DG, Rahardjo H. Soil Mechanics for Unsaturated Soils. John Wiley & Sons, 1993
    [3] 陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性. 岩土工程报, 1999, 21(1): 82-90 (Chen Zhenghan. Deformation, strength, yield and water change characteristics of reshaped unsaturated loess. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90 (in Chinese)

    Chen Zhenghan. Deformation, strength, yield and water change characteristics of reshaped unsaturated loess. Chinese Journal of Geotechnical Engineering, 1999, 21(01): 82-90(in Chinese)
    [4] 黎澄生, 孔令伟, 柏巍等. 土-水特征曲线滞后阻塞模型. 岩土力学, 2018, 39(2): 598-604 (Li Chengsheng, Kong Lingwei, Bai Wei, et al. Hysteresis blocking model of soil-water characteristic curve. Rock Mechanics, 2018, 39(2): 598-604 (in Chinese)

    Li Chengsheng, Kong Lingwei, Bai Wei, et al. Hysteresis blocking model of soil-water characteristic curve. Rock Mechanics, 2018, 39(2): 598-604(in Chinese)
    [5] 栾茂田, 李顺群, 杨庆. 非饱和土的理论土-水特征曲线. 岩土工程学报, 2005, 27(6): 611-615 (Luan Maotian, Li Shunqun, Yang Qing. Theoretical soil-water characteristic curve of unsaturated soil. Journal of Geotechnical Engineering, 2005, 27(6): 611-615 (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.001

    Luan Maotian, Li Shunqun, Yang Qing. Theoretical soil-water characteristic curve of unsaturated soil. Journal of Geotechnical Engineering, 2005, 27(06): 611-615(in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.001
    [6] 刘艳, 赵成刚. 土水特征曲线滞后模型的研究. 岩土工程学报, 2008, 30(3): 399-405 (Liu Yan, Zhao Chenggang. Research on hysteresis model of soil-water characteristic curve. Journal of Geotechnical Engineering, 2008, 30(3): 399-405 (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.016

    Liu Yan, Zhao Chenggang. Research on hysteresis model of soil-water characteristic curve. Journal of Geotechnical Engineering, 2008, 30(03): 399-405(in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.016
    [7] 贺炜, 赵明华, 陈永贵等. 土-水特征曲线滞后现象的微观机制与计算分析. 岩土力学, 2010, 31(4): 1078-1083 (He Wei, Zhao Minghua, Chen Yonggui, et al. Microscopic mechanism and calculation analysis of hysteresis of soil-water characteristic curve. Rock Mechanics, 2010, 31(4): 1078-1083 (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012

    He Wei, Zhao Minghua, Chen Yonggui, et al. Microscopic mechanism and calculation analysis of hysteresis of soil-water characteristic curve. Rock Mechanics, 2010, 31(04): 1078-1083(in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012
    [8] 张昭, 刘奉银, 赵旭光等. 考虑应力引起孔隙比变化的土水特征曲线模型. 水利学报, 2013, 44(5): 578-585 (Zhang Zhao, Liu Fengyin, Zhao Xuguang, et al. Soil-water characteristic curve model considering the change of void ratio caused by stress. Journal of Hydraulic Engineering, 2013, 44(5): 578-585 (in Chinese) doi: 10.3969/j.issn.0559-9350.2013.05.013

    Zhang Zhao, Liu Fengyin, Zhao Xuguang, et al. Soil-water characteristic curve model considering the change of void ratio caused by stress. Journal of Hydraulic Engineering, 2013, 44(5): 578-585(in Chinese) doi: 10.3969/j.issn.0559-9350.2013.05.013
    [9] 张鹏程, 汤连生, 姜力群等. 基质吸力与含水率及干密度定量关系研究. 岩石力学与工程学报, 2013, 32(S1): 2792-2797 (Zhang Pengcheng, Tang Liansheng, Jiang Liqundeng, et al. A study on the quantitative relationship between matrix suction, moisture content and dry density. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2792-2797 (in Chinese)

    Zhang Pengcheng, Tang Liansheng, Jiang Liqundeng, et al. A Study on the quantitative relationship between matrix suction, moisture content and dry density. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2792-2797(in Chinese)
    [10] 孙德安, 高游. 不同制样方法非饱和土的持水特性研究. 岩土工程学报, 2015, 37(1): 91-97 (Sun Dean, Gao You. Research on water holding characteristics of unsaturated soil with different sample preparation methods. Journal of Geotechnical Engineering, 2015, 37(1): 91-97 (in Chinese)

    Sun Dean, Gao You. Research on Water Holding Characteristics of Unsaturated Soil with Different Sample Preparation Methods. Journal of Geotechnical Engineering, 2015, 37(01): 91-97(in Chinese)
    [11] 蔡国庆, 盛岱超, 周安楠. 考虑初始孔隙比影响的非饱和土相对渗透系数方程. 岩土工程学报, 2014, 36(5): 827-835 (Cai Guoqing, Cheng Daichao, Zhou Annan. Equation of relative permeability coefficient of unsaturated soil considering the influence of initial porosity ratio. Journal of Geotechnical Engineering, 2014, 36(5): 827-835 (in Chinese)

    Cai Guoqing, Cheng Daichao, Zhou Annan. Equation of Relative Permeability Coefficient of Unsaturated Soil Considering the Influence of Initial Porosity Ratio. Journal of Geotechnical Engineering, 2014, 36(05): 827-835(in Chinese)
    [12] Lambert P, Chau A, Delchambre A, et al. Comparison between two capillary forces models. Langmuir, 2008, 24(7): 3157-3163 doi: 10.1021/la7036444
    [13] Megias-Alguacil D, Gauckler LJ. Accuracy of the toroidal approximation for the calculus of concave and convex liquid bridges between particles. Granular Matter, 2011, 13(4): 487-492 doi: 10.1007/s10035-011-0260-9
    [14] Pepin X, Rossetti D, Iveson SM, et al. Modeling the evolution and rupture of pendular liquid bridges in the presence of large wetting hysteresis. Journal of Colloid & Interface Science, 2000, 232(2): 289-297
    [15] Fisher RA. On the capillary forces in an ideal soil correction of formulae given by W.B. Haines. The Journal of Agricultural Science, 1926, 16(3): 492-505 doi: 10.1017/S0021859600007838
    [16] Lian G, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid & Interface Science, 1993, 161(1): 138-147
    [17] Orr FM, Scriven LE, Rivas AP. Pendular rings between solids: meniscus properties and capillary force. Journal of Fluid Mechanics, 1975, 67(4): 723-742 doi: 10.1017/S0022112075000572
    [18] Nguyen HNG, Millet O, Gagneux G. On the capillary bridge between spherical particles of unequal size: analytical and experimental approaches. Continuum Mechanics & Thermodynamics, 2019, 31(1): 225-237
    [19] Lambert P, Delchambre A. Parameters ruling capillary forces at the submillimetric scale. Langmuir, 2005, 21(21): 9537-9543 doi: 10.1021/la0507131
    [20] Willett CD, Adams MJ, Johnson SA, et al. Capillary bridges between two spherical bodies. Langmuir, 2000, 16(24): 9396-9405 doi: 10.1021/la000657y
    [21] Rossetti D, Pepin X, Simons SJR. Rupture energy and wetting behaviour of pendular liquid bridges in relation to the spherical agglomeration process. Journal of Colloid & Interface Science, 2003, 261(1): 161-169
    [22] Lievano D, Velankar S, McCarthy JJ. The rupture force of liquid bridges in two and three particle systems. Powder Technology, 2017, 313(2): 18-26
    [23] Wang JP, Gallo E, Franois B, et al. Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technology, 2016, 305(6): 89-98
    [24] Sprakel J, Besseling NAM, Cohen Stuart MA, et al. Capillary adhesion in the limit of saturation: Thermodynamics, self-consistent field modeling and experiment. Langmuir, 2008, 24(4): 1308-1317 doi: 10.1021/la702222f
    [25] 庄大伟, 杨艺菲, 胡海涛等. 竖直平板间液桥形状的观测与预测模型开发. 化工学报, 2016, 67(6): 2224-2229 (Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)

    Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)
    [26] 朱朝飞, 贾建援, 付红志等. 狭长平行板间液桥形态及受力研究. 工程力学, 2016, 33(6): 222-229 (Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)

    Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)
    [27] 王学卫, 于洋. 重力影响下板间液桥断裂距离研究. 实验力学, 2012, 27(1): 70-76 (Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)

    Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)
    [28] 于洋, 王学卫, 吴群. 基于Surface Evolver模拟液桥断裂距离. 医用生物力学, 2011, 26(5): 436-440

    Yu Yang, Wang Xuewei, Wu Qun. Simulation of liquid bridge fracture distance based on Surface Evolver. Journal of Medical Biomechanics. 2011, 26(5): 436-440 (in Chinese)
    [29] Brakke KA. The Surface Evolver. Experimental Mathematics, 1992, 1(2): 141-165 doi: 10.1080/10586458.1992.10504253
    [30] Brakke KA. The surface evolver and the stability of liquid surfaces. Philosophical Transactions Mathematical Physical & Engineering Sciences, 1996, 354(1715): 2143-2157
    [31] Fisher LR, Israelachvili JN. Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci. Journal of Colloid & Interface Science, 1981, 80(2): 528-541
    [32] Gagneux G, Millet O. Analytic calculation of capillary bridge properties deduced as an inverse problem from experimental data. Transport in Porous Media, 2014, 105(1): 117-139 doi: 10.1007/s11242-014-0363-y
    [33] 卢珍萍. 固体表面上液滴外观形貌的研究. [硕士学位论文]. 北京: 北京理工大学, 2016

    Lu Zhenping. A study on appearance and morphology of liquid drops on solid surface. Beijing: Beijing Institute of Technology, 2016 (in Chinese)
    [34] Tadrist L, Motte L, Rahli O, et al. Characterization of interface properties of fluids by evaporation of a capillary bridge. Royal Society Open Science, 2019, 6(12): 191608 doi: 10.1098/rsos.191608
    [35] Nguyen HNG, Zhao CF, Millet O, et al. Effects of surface roughness on liquid bridge capillarity and droplet wetting. Powder Technology, 2021, 378: 487-496 doi: 10.1016/j.powtec.2020.10.016
    [36] Anandarajah A, Amarasinghe PM. Microstructural investigation of soil suction and hysteresis of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 38-46 doi: 10.1061/(ASCE)GT.1943-5606.0000555
    [37] Guan GS, Rahardjo H, Choon LE. Shear strength equations for unsaturated soil under drying and wetting. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(4): 594-606
    [38] Souza EJD, Gao LC, McCarthy TJ, et al. Effect of contact angle hysteresis on the measurement of capillary forces. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(4): 1391-1396
    [39] Shi Z, Zhang Y, Liu M, et al. Dynamic contact angle hysteresis in liquid bridges. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 555: 365-371
    [40] Neumann WA, David R, Zuo Y. Applied Surface Thermodynamics. Boca Raton, London: CRC Press, Taylor & Francis Group, 2011
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  98
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 录用日期:  2022-04-14
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回