RANDOM VIBRATION ANALYSIS OF A SEA-CROSSING BRIDGE AND POWER CABLE COMPOSITE STRUCTURE UNDER TRAFFIC LOADS
-
摘要: 电缆沿桥跨海铺设是海缆铺设的一种新的形式, 针对由汽车和列车交通载荷诱发的沿跨海桥梁敷设电缆的振动问题, 建立了桥梁-电缆的整体组合结构分析模型, 将汽车和列车的作用载荷简化为移动的随机集中载荷序列, 发展虚拟激励法(pseudo-excitation method, PEM)用于分析移动随机载荷作用下电缆位移和应力响应的标准差及演变功率谱 (power spectral density, PSD), 并研究了汽车和列车运行速度对电缆动力响应标准差的影响. PEM将移动随机载荷问题转化为特定频率简谐移动载荷作用下的动力响应分析, 能够计算得到与Monte Carlo (MC) 方法非常吻合的电缆动力响应标准差, 但所需的时域响应分析次数远少于MC方法. 数值结果表明, 随着汽车和列车运行速度的提升, 电缆位移和应力标准差呈现增大的趋势; 在汽车和列车交通载荷作用下, 铝护套的位移标准差和功率谱的值比缆芯要大, 这可能会使得电缆的疲劳破坏首先发生在铝护套层, 本文工作对电缆沿桥跨海铺设实际工程具有一定的借鉴意义.Abstract: Laying power cables along the bridge is a new way of laying submarine cables across the sea. This paper focuses on the vibration of power cables laid on sea-crossing bridges induced by automobile and vehicle traffic loads. The overall combined structural analysis model of the bridge and cable is established, and the automobile and vehicle loads are simplified into random moving concentrated load sequence. The pseudo-excitation method (PEM) is developed to calculate the standard deviation and evolutionary power spectrum density of displacement and stress responses of the cable under random moving loads. The influence of automobile and vehicle speed on the standard deviation of cable dynamic response is studied. The PEM transforms the problem of random moving loads into dynamic response analysis under simple harmonic moving loads with specific frequencies, and it can calculate the standard deviation of dynamic response of the cable which is very consistent with Monte Carlo (MC) method, but the number of time-domain response analysis required is far less than that of MC method. The numerical results show that the standard deviation of displacement and stress of the cable increases with the increase of automobile and vehicle running speed. Under automobile and vehicle traffic loads, the standard deviation and power spectrum of displacement of aluminum sheath are larger than that of the cable core, which may make the fatigue failure of the cable occur in the aluminum sheath layer first. This work has a certain reference significance for the actual project of cable laying along the sea-crossing bridges.
-
Key words:
- sea-crossing laying /
- power cable /
- traffic loads /
- random vibration /
- pseudo-excitation method
-
Material Density/(kg·m−3) Elastic modulus/MPa Poisson’s ratio Thickness/mm copper core 8700 115000 0.34 30.9 inner/outer semiconducting layer 1200 90000 0.40 2.0 insulation/lining layer 960/8700 83000/110000 0.47/0.35 24.7/10.0 aluminum sheath/outer sheath 2700/930 70000/314000 0.33/0.40 3.3/5.0 表 2 桥梁的结构及材料参数
Table 2. Material parameters of bridge
Component Density
/(kg·m−3)Poisson’s ratio Sectional area/m2 Elastic modulus/MPa Bending moment of inertia/m4 deck/pier 2500/2500 0.2/0.2 6.8/2.1 34500/34500 2.05/0.32 -
[1] 陈轶玮, 徐世泽. 跨海大桥和海堤上高压电缆的敷设. 电力建设, 2010, 31(6): 58-61 (Chen Yiwei, Xu Shize. Installation of high voltage cables on the sea-crossing bridges & sea dykes. Electric Power Construction, 2010, 31(6): 58-61 (in Chinese) doi: 10.3969/j.issn.1000-7229.2010.06.014 [2] 郭志涛. 海口如意岛跨海大桥沿桥敷设110 kV电缆的设计要点. 产业科技创新, 2020, 2(30): 53-54 (Guo Zhitao. Key design points of laying 110 kV cable along Haikou Ruyi Island sea-crossing bridge. Industrial Technology Innovation, 2020, 2(30): 53-54 (in Chinese) [3] 杨伟航. 关于高压电力电缆在桥梁上敷设的方案设计要点. 电网与清洁能源, 2012, 28(12): 15-18 (Yang Weihang. Main points of the HV cable laying scheme on bridge. Power System and Clean Energy, 2012, 28(12): 15-18 (in Chinese) doi: 10.3969/j.issn.1674-3814.2012.12.003 [4] 周韫捷, 姜芸, 蒋晓娟. 远距离跨海大桥高压电缆敷设工程. 电网技术, 2006, 30(22): 87-90 (Zhou Yunjie, Jiang Yun, Jiang Xiaojuan. Cable laying project of long distance bridge cutting across sea. Power System Technology, 2006, 30(22): 87-90 (in Chinese) doi: 10.3321/j.issn:1000-3673.2006.22.015 [5] 李程. 随桥敷设高压电缆技术在舟山群岛新区的规划应用研究. [硕士论文]. 北京: 华北电力大学, 2017Li Cheng. The analysis and design of high voltage cable laying along bridges technology in the new district of Zhoushan Islands. [Master Thesis]. Beijing: North China Electric Power University, 2017 (in Chinese) [6] 周远翔, 赵健康, 刘睿等. 高压/超高压电力电缆关键技术分析及展望. 高电压技术, 2014, 40(9): 2593-2612 (Zhou Yuanxiang, Zhao Jiankang, Liu Rui. Key technical analysis and prospect of high voltage and extra-high voltage power cable. High Voltage Engineering, 2014, 40(9): 2593-2612 (in Chinese) [7] 钟宇军, 李程, 孙建生等. 国内外桥梁敷设电力电缆的可行性对比分析及建议. 浙江电力, 2016, 35(7): 16-19 (Zhong Yujun, Li Cheng, Sun Jiansheng, et al. Comparative analysis on the feasibility of bridge-along power cable laying both at home and abroad and the suggestions. Zhejiang Electric Power, 2016, 35(7): 16-19 (in Chinese) doi: 10.3969/j.issn.1007-1881.2016.07.004 [8] 刘鹏飞, 郑津洋, 孙国有. 内压和振动载荷联合作用下埋地管线疲劳寿命评估. 机械强度, 2010, 32(1): 125-129 (Liu Pengfei, Zheng Jinyang, Sun Guoyou. Fatigue lifetime evaluation of buried pipeline under internal pressure and vibration loads. Journal of Mechanical Strength, 2010, 32(1): 125-129 (in Chinese) [9] 张振鹏, 蒙绍新, 夏荣等. 振动载荷条件下的交联聚乙烯绝缘老化特性试验研究. 高电压技术, 2016, 42(8): 2399-2405 (Zhang Zhenpeng, Meng Shaoxin, Xia Rong, et al. Experimental study on aging characteristics of XLPE insulation under vibration loads. High Voltage Engineering, 2016, 42(8): 2399-2405 (in Chinese) [10] 杨世迎, 祝贺, 何文等. 外部冲击下电力电缆护套结构性损伤研究. 振动与冲击, 2020, 39(24): 122-127 (Yang Shiying, Zhu He, He Wen, et al. A study on structural damage of power cable jacket under external impact. Journal of Vibration and Shock, 2020, 39(24): 122-127 (in Chinese) [11] 金海云, 张涛, 李志伟等. 弯曲电加热状态下110 kV XLPE电缆绝缘层应力对副产物分布, 显微结构及性能的影响. 高电压技术, 2019, 45(2): 448-455 (Jin Haiyun, Zhang Tao, Li Zhiwei, et al. Influence of stress of 110 kV XLPE cable insulation on the by-product distribution, microstructure and properties under bending state with electric heating. High Voltage Engineering, 2019, 45(2): 448-455 (in Chinese) [12] 赵莉华, 杨兰, 李巍巍等. 交联聚乙烯热老化与绝缘性能的关联关系. 中国电力, 2020, 53(9): 118-124 (Zhao Lihua, Yang Lan, Li Weiwei, et al. Relationship between thermal aging and insulation properties of XLPE. Electric Power, 2020, 53(9): 118-124 (in Chinese) [13] 张成, 李洪飞, 杨延滨等. 交联聚乙烯电缆老化、诊断及修复研究进展. 绝缘材料, 2020, 53(7): 1-11 (Zhang Cheng, Li Hongfei, Yang Yanbing, et al. Research progress in ageing, evaluation, and rejuvenation of XPLE cable insulation. Insulating Materials, 2020, 53(7): 1-11 (in Chinese) [14] 周凯, 陈泽龙, 李天华等. 运行老化XLPE电缆导体屏蔽层侧绝缘缺陷分析. 高电压技术, 2020, 46(1): 187-194 (Zhou Kai, Chen Zelong, Li Tianhua, et al. Insulation defects at the side of conductor screen layer in service-aged XLPE cables. High Voltage Engineering, 2020, 46(1): 187-194 (in Chinese) [15] Zhang ZP, Zheng CJ, Zheng M, et al. Interface damages of electrical insulation in factory joints of high voltage submarine cables. Energies, 2020, 13(15): 3892 [16] Zhang ZP, Wang HY, Li ZL, et al. Molecule diffusion behaviours of waterproof sealants into silicone rubber insulation for submarine cable joint based on molecular dynamics simulations. High Voltage, 2020, 6(2): 230-241 [17] GB 50217—2018, 电力工程电缆设计标准. 北京: 中国计划出版社, 2018GB 50217—2018, Standard for Design of Cables of Electric Power Engineering. Beijing: China Planning Press, 2018 (in Chinese) [18] 刘骥, 张明泽, 张振鹏等. 外部振动对500 kV交联聚乙烯电缆敷设条件的影响. 高电压技术, 2017, 43(2): 673-681 (Liu Ji, Zhang Mingze, Zhang Zhenpeng, et al. Influence of external vibration on laying condition of 500 kV XLPE cables. High Voltage Engineering, 2017, 43(2): 673-681 (in Chinese) [19] Cable Systems Electrical Characteristics: CIGRE WG B1-30. Paris: CIGRE, 2013 [20] Cable systems in multipurpose or shared structures: CIGRE WG B1-08. Paris: CIGRE, 2010 [21] Wu SQ, Law SS. Evaluating the response statistics of an uncertain bridge-vehicle system. Mechanical Systems and Signal Processing, 2012, 27: 576-589 doi: 10.1016/j.ymssp.2011.07.019 [22] 赵岩, 周瑞鹏, 贾甜. 移动随机荷载作用下梁桥非平稳随机振动的PEM-FFT方法. 计算力学学报, 2019, 36(1): 65-70 (Zhao Yan, Zhou Ruipeng, Jia Tian. PEM-FFT for non-stationary random vibration analysis of simple-supported beam bridge under moving random load. Chinese Journal of Computational Mechanics, 2019, 36(1): 65-70 (in Chinese) doi: 10.7511/jslx20170925001 [23] Zhu SY, Li YL. Random characteristics of vehicle-bridge system vibration by an optimized pseudo excitation method. International Journal of Structural Stability and Dynamics, 2020, 20(5): 2050069 doi: 10.1142/S0219455420500698 [24] 林家浩, 张亚辉. 随机振动的虚拟激励法. 北京: 科学出版社, 2004Lin Jiahao, Zhang Yahui. Pseudo-Excitation Method for Random Vibration. Beijing: Science Press, 2004 (in Chinese) [25] 张有为, 项盼, 赵岩等. 车轨系统随机响应周期性拟稳态分析. 力学学报, 2012, 44(6): 1046-1056 (Zhang Youwei, Xaing Pan, Zhao Yan, et al. A pseudo-steady state method for analyzing random response of coupled vehicle-track systems. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1046-1056 (in Chinese) doi: 10.6052/0459-1879-12-041 [26] 赵岩, 项盼, 张有为等. 不确定车轨耦合系统辛随机振动分析. 力学学报, 2012, 44(4): 769-778 (Zhao Yan, Xiang Pan, Zhang Youwei, et al. Symplectic random vibration analysis for coupled vehicle-track systems with parameter uncertainties. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 769-778 (in Chinese) doi: 10.6052/0459-1879-11-361 [27] 陈水生, 赵辉, 李锦华等. 基于相位调制的平稳非高斯桥面不平顺随机激励的模拟. 振动与冲击, 2021, 40(18): 70-79 (Chen Shuisheng, Zhao Hui, Li Jinhua, et al. Simulation of random excitation of non-Gaussian bridge deck irregularity based on phase modulation. Journal of Vibration and Shock, 2021, 40(18): 70-79 (in Chinese) [28] Lu F, Kennedy D, Williams FW, et al. Non-stationary random vibration of FE structures subjected to moving loads. Shock and Vibration, 2009, 16: 291-305 doi: 10.1155/2009/927410 [29] Zhang N, Zhou ZJ, Wu ZZ. Safety evaluation of a vehicle–bridge interaction system using the pseudo-excitation method. Railway Engineering Science, 2022, 30: 41-56 [30] 桂水荣, 张政韬, 陈水生等. 桥面不平引起车桥系统随机振动车速因素分析. 振动. 测试与诊断, 2018, 38(6): 1223-1297 (Gui Shuirong, Zhang Zhengtao, Chen Shuisheng, et al. Influence analysis of vehicle speeds on random vibration of vehicle-bridge coupling systems caused by deck irregularity. Journal of Vibration,Measurement &Diagnosis, 2018, 38(6): 1223-1297 (in Chinese) [31] 翟婉明. 车辆-轨道耦合动力学. 北京: 科学出版社, 2007Zhai Wanming. Vehicle-track Coupling Dynamics. Beijing: Science Press, 2007 (in Chinese) [32] 姚卫星. 结构疲劳寿命分析. 北京: 科学出版社, 2019Yao Weixing. Fatigue Life Estimation of Structures. Beijing: Science Press, 2019 (in Chinese) -