EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交通载荷作用下跨海桥梁-电缆组合结构随机振动分析

张振鹏 赵健康 李文杰 赵鹏 黄凯文

张振鹏, 赵健康, 李文杰, 赵鹏, 黄凯文. 交通载荷作用下跨海桥梁-电缆组合结构随机振动分析. 力学学报, 2022, 54(4): 912-920 doi: 10.6052/0459-1879-21-626
引用本文: 张振鹏, 赵健康, 李文杰, 赵鹏, 黄凯文. 交通载荷作用下跨海桥梁-电缆组合结构随机振动分析. 力学学报, 2022, 54(4): 912-920 doi: 10.6052/0459-1879-21-626
Zhang Zhenpeng, Zhao Jiankang, Li Wenjie, Zhao Peng, Huang Kaiwen. Random vibration analysis of a sea-crossing bridge and power cable composite structure under traffic loads. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 912-920 doi: 10.6052/0459-1879-21-626
Citation: Zhang Zhenpeng, Zhao Jiankang, Li Wenjie, Zhao Peng, Huang Kaiwen. Random vibration analysis of a sea-crossing bridge and power cable composite structure under traffic loads. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 912-920 doi: 10.6052/0459-1879-21-626

交通载荷作用下跨海桥梁-电缆组合结构随机振动分析

doi: 10.6052/0459-1879-21-626
基金项目: 桥梁电缆的防振结构优化与运行状态评估技术研究资助项目(GY83-21-004)
详细信息
    作者简介:

    张振鹏, 高工, 研究方向: 海缆线路设计建设与运维, 电缆在线监测技术、敷设施工及故障定位技术. E-mail: zhangzhenpeng@epri.sgcc.com.cn

  • 中图分类号: TB122

RANDOM VIBRATION ANALYSIS OF A SEA-CROSSING BRIDGE AND POWER CABLE COMPOSITE STRUCTURE UNDER TRAFFIC LOADS

  • 摘要: 电缆沿桥跨海铺设是海缆铺设的一种新的形式, 针对由汽车和列车交通载荷诱发的沿跨海桥梁敷设电缆的振动问题, 建立了桥梁-电缆的整体组合结构分析模型, 将汽车和列车的作用载荷简化为移动的随机集中载荷序列, 发展虚拟激励法(pseudo-excitation method, PEM)用于分析移动随机载荷作用下电缆位移和应力响应的标准差及演变功率谱 (power spectral density, PSD), 并研究了汽车和列车运行速度对电缆动力响应标准差的影响. PEM将移动随机载荷问题转化为特定频率简谐移动载荷作用下的动力响应分析, 能够计算得到与Monte Carlo (MC) 方法非常吻合的电缆动力响应标准差, 但所需的时域响应分析次数远少于MC方法. 数值结果表明, 随着汽车和列车运行速度的提升, 电缆位移和应力标准差呈现增大的趋势; 在汽车和列车交通载荷作用下, 铝护套的位移标准差和功率谱的值比缆芯要大, 这可能会使得电缆的疲劳破坏首先发生在铝护套层, 本文工作对电缆沿桥跨海铺设实际工程具有一定的借鉴意义.

     

  • 图  1  电缆结构

    Figure  1.  Structure of cable

    图  2  电缆蛇形敷设形状

    Figure  2.  Snake-shaped laying shape of cable

    图  3  跨海桥梁−电缆组合结构分析模型

    Figure  3.  Analysis model of the coastal bridge-cable composite strucuture

    图  4  MC方法与PEM计算结果对比

    Figure  4.  Comparison of results of MC method and PEM

    图  5  电缆跨中位置位移响应时变标准差

    Figure  5.  SD of displacement of the mid-span of cable

    6  电缆跨中位置缆芯应力响应时变标准差

    6.  SD of stress of cable core of the mid-span of cable

    图  6  电缆跨中位置缆芯应力响应时变标准差 (续)

    Figure  6.  SD of stress of cable core of the mid-span of cable (continued)

    图  7  电缆跨中位置铝护套应力响应时变标准差

    Figure  7.  SD of stress of aluminum sheath of the mid-span of cable

    图  8  电缆跨中位置位移响应演变功率谱

    Figure  8.  PSD of displacement of the mid-span of cable

    9  电缆跨中位置缆芯应力响应演变功率谱

    9.  PSD of stress of cable core of the mid-span of cable

    图  9  电缆跨中位置缆芯应力响应演变功率谱 (续)

    Figure  9.  PSD of stress of cable core of the mid-span of cable (continued)

    图  10  电缆跨中位置铝护套应力演变功率谱

    Figure  10.  PSD of stress of aluminum sheath of the mid-span of cable

    表  1  电缆各层材料参数[18]

    Table  1.   Material parameters of each layer of cable[18]

    MaterialDensity/(kg·m−3)Elastic modulus/MPaPoisson’s ratioThickness/mm
    copper core 8700 115000 0.34 30.9
    inner/outer semiconducting layer 1200 90000 0.40 2.0
    insulation/lining layer 960/8700 83000/110000 0.47/0.35 24.7/10.0
    aluminum sheath/outer sheath 2700/930 70000/314000 0.33/0.40 3.3/5.0
    下载: 导出CSV

    表  2  桥梁的结构及材料参数

    Table  2.   Material parameters of bridge

    ComponentDensity
    /(kg·m−3)
    Poisson’s ratioSectional area/m2Elastic modulus/MPaBending moment of inertia/m4
    deck/pier2500/25000.2/0.26.8/2.134500/345002.05/0.32
    下载: 导出CSV
  • [1] 陈轶玮, 徐世泽. 跨海大桥和海堤上高压电缆的敷设. 电力建设, 2010, 31(6): 58-61 (Chen Yiwei, Xu Shize. Installation of high voltage cables on the sea-crossing bridges & sea dykes. Electric Power Construction, 2010, 31(6): 58-61 (in Chinese) doi: 10.3969/j.issn.1000-7229.2010.06.014
    [2] 郭志涛. 海口如意岛跨海大桥沿桥敷设110 kV电缆的设计要点. 产业科技创新, 2020, 2(30): 53-54 (Guo Zhitao. Key design points of laying 110 kV cable along Haikou Ruyi Island sea-crossing bridge. Industrial Technology Innovation, 2020, 2(30): 53-54 (in Chinese)
    [3] 杨伟航. 关于高压电力电缆在桥梁上敷设的方案设计要点. 电网与清洁能源, 2012, 28(12): 15-18 (Yang Weihang. Main points of the HV cable laying scheme on bridge. Power System and Clean Energy, 2012, 28(12): 15-18 (in Chinese) doi: 10.3969/j.issn.1674-3814.2012.12.003
    [4] 周韫捷, 姜芸, 蒋晓娟. 远距离跨海大桥高压电缆敷设工程. 电网技术, 2006, 30(22): 87-90 (Zhou Yunjie, Jiang Yun, Jiang Xiaojuan. Cable laying project of long distance bridge cutting across sea. Power System Technology, 2006, 30(22): 87-90 (in Chinese) doi: 10.3321/j.issn:1000-3673.2006.22.015
    [5] 李程. 随桥敷设高压电缆技术在舟山群岛新区的规划应用研究. [硕士论文]. 北京: 华北电力大学, 2017

    Li Cheng. The analysis and design of high voltage cable laying along bridges technology in the new district of Zhoushan Islands. [Master Thesis]. Beijing: North China Electric Power University, 2017 (in Chinese)
    [6] 周远翔, 赵健康, 刘睿等. 高压/超高压电力电缆关键技术分析及展望. 高电压技术, 2014, 40(9): 2593-2612 (Zhou Yuanxiang, Zhao Jiankang, Liu Rui. Key technical analysis and prospect of high voltage and extra-high voltage power cable. High Voltage Engineering, 2014, 40(9): 2593-2612 (in Chinese)
    [7] 钟宇军, 李程, 孙建生等. 国内外桥梁敷设电力电缆的可行性对比分析及建议. 浙江电力, 2016, 35(7): 16-19 (Zhong Yujun, Li Cheng, Sun Jiansheng, et al. Comparative analysis on the feasibility of bridge-along power cable laying both at home and abroad and the suggestions. Zhejiang Electric Power, 2016, 35(7): 16-19 (in Chinese) doi: 10.3969/j.issn.1007-1881.2016.07.004
    [8] 刘鹏飞, 郑津洋, 孙国有. 内压和振动载荷联合作用下埋地管线疲劳寿命评估. 机械强度, 2010, 32(1): 125-129 (Liu Pengfei, Zheng Jinyang, Sun Guoyou. Fatigue lifetime evaluation of buried pipeline under internal pressure and vibration loads. Journal of Mechanical Strength, 2010, 32(1): 125-129 (in Chinese)
    [9] 张振鹏, 蒙绍新, 夏荣等. 振动载荷条件下的交联聚乙烯绝缘老化特性试验研究. 高电压技术, 2016, 42(8): 2399-2405 (Zhang Zhenpeng, Meng Shaoxin, Xia Rong, et al. Experimental study on aging characteristics of XLPE insulation under vibration loads. High Voltage Engineering, 2016, 42(8): 2399-2405 (in Chinese)
    [10] 杨世迎, 祝贺, 何文等. 外部冲击下电力电缆护套结构性损伤研究. 振动与冲击, 2020, 39(24): 122-127 (Yang Shiying, Zhu He, He Wen, et al. A study on structural damage of power cable jacket under external impact. Journal of Vibration and Shock, 2020, 39(24): 122-127 (in Chinese)
    [11] 金海云, 张涛, 李志伟等. 弯曲电加热状态下110 kV XLPE电缆绝缘层应力对副产物分布, 显微结构及性能的影响. 高电压技术, 2019, 45(2): 448-455 (Jin Haiyun, Zhang Tao, Li Zhiwei, et al. Influence of stress of 110 kV XLPE cable insulation on the by-product distribution, microstructure and properties under bending state with electric heating. High Voltage Engineering, 2019, 45(2): 448-455 (in Chinese)
    [12] 赵莉华, 杨兰, 李巍巍等. 交联聚乙烯热老化与绝缘性能的关联关系. 中国电力, 2020, 53(9): 118-124 (Zhao Lihua, Yang Lan, Li Weiwei, et al. Relationship between thermal aging and insulation properties of XLPE. Electric Power, 2020, 53(9): 118-124 (in Chinese)
    [13] 张成, 李洪飞, 杨延滨等. 交联聚乙烯电缆老化、诊断及修复研究进展. 绝缘材料, 2020, 53(7): 1-11 (Zhang Cheng, Li Hongfei, Yang Yanbing, et al. Research progress in ageing, evaluation, and rejuvenation of XPLE cable insulation. Insulating Materials, 2020, 53(7): 1-11 (in Chinese)
    [14] 周凯, 陈泽龙, 李天华等. 运行老化XLPE电缆导体屏蔽层侧绝缘缺陷分析. 高电压技术, 2020, 46(1): 187-194 (Zhou Kai, Chen Zelong, Li Tianhua, et al. Insulation defects at the side of conductor screen layer in service-aged XLPE cables. High Voltage Engineering, 2020, 46(1): 187-194 (in Chinese)
    [15] Zhang ZP, Zheng CJ, Zheng M, et al. Interface damages of electrical insulation in factory joints of high voltage submarine cables. Energies, 2020, 13(15): 3892
    [16] Zhang ZP, Wang HY, Li ZL, et al. Molecule diffusion behaviours of waterproof sealants into silicone rubber insulation for submarine cable joint based on molecular dynamics simulations. High Voltage, 2020, 6(2): 230-241
    [17] GB 50217—2018, 电力工程电缆设计标准. 北京: 中国计划出版社, 2018

    GB 50217—2018, Standard for Design of Cables of Electric Power Engineering. Beijing: China Planning Press, 2018 (in Chinese)
    [18] 刘骥, 张明泽, 张振鹏等. 外部振动对500 kV交联聚乙烯电缆敷设条件的影响. 高电压技术, 2017, 43(2): 673-681 (Liu Ji, Zhang Mingze, Zhang Zhenpeng, et al. Influence of external vibration on laying condition of 500 kV XLPE cables. High Voltage Engineering, 2017, 43(2): 673-681 (in Chinese)
    [19] Cable Systems Electrical Characteristics: CIGRE WG B1-30. Paris: CIGRE, 2013
    [20] Cable systems in multipurpose or shared structures: CIGRE WG B1-08. Paris: CIGRE, 2010
    [21] Wu SQ, Law SS. Evaluating the response statistics of an uncertain bridge-vehicle system. Mechanical Systems and Signal Processing, 2012, 27: 576-589 doi: 10.1016/j.ymssp.2011.07.019
    [22] 赵岩, 周瑞鹏, 贾甜. 移动随机荷载作用下梁桥非平稳随机振动的PEM-FFT方法. 计算力学学报, 2019, 36(1): 65-70 (Zhao Yan, Zhou Ruipeng, Jia Tian. PEM-FFT for non-stationary random vibration analysis of simple-supported beam bridge under moving random load. Chinese Journal of Computational Mechanics, 2019, 36(1): 65-70 (in Chinese) doi: 10.7511/jslx20170925001
    [23] Zhu SY, Li YL. Random characteristics of vehicle-bridge system vibration by an optimized pseudo excitation method. International Journal of Structural Stability and Dynamics, 2020, 20(5): 2050069 doi: 10.1142/S0219455420500698
    [24] 林家浩, 张亚辉. 随机振动的虚拟激励法. 北京: 科学出版社, 2004

    Lin Jiahao, Zhang Yahui. Pseudo-Excitation Method for Random Vibration. Beijing: Science Press, 2004 (in Chinese)
    [25] 张有为, 项盼, 赵岩等. 车轨系统随机响应周期性拟稳态分析. 力学学报, 2012, 44(6): 1046-1056 (Zhang Youwei, Xaing Pan, Zhao Yan, et al. A pseudo-steady state method for analyzing random response of coupled vehicle-track systems. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1046-1056 (in Chinese) doi: 10.6052/0459-1879-12-041
    [26] 赵岩, 项盼, 张有为等. 不确定车轨耦合系统辛随机振动分析. 力学学报, 2012, 44(4): 769-778 (Zhao Yan, Xiang Pan, Zhang Youwei, et al. Symplectic random vibration analysis for coupled vehicle-track systems with parameter uncertainties. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 769-778 (in Chinese) doi: 10.6052/0459-1879-11-361
    [27] 陈水生, 赵辉, 李锦华等. 基于相位调制的平稳非高斯桥面不平顺随机激励的模拟. 振动与冲击, 2021, 40(18): 70-79 (Chen Shuisheng, Zhao Hui, Li Jinhua, et al. Simulation of random excitation of non-Gaussian bridge deck irregularity based on phase modulation. Journal of Vibration and Shock, 2021, 40(18): 70-79 (in Chinese)
    [28] Lu F, Kennedy D, Williams FW, et al. Non-stationary random vibration of FE structures subjected to moving loads. Shock and Vibration, 2009, 16: 291-305 doi: 10.1155/2009/927410
    [29] Zhang N, Zhou ZJ, Wu ZZ. Safety evaluation of a vehicle–bridge interaction system using the pseudo-excitation method. Railway Engineering Science, 2022, 30: 41-56
    [30] 桂水荣, 张政韬, 陈水生等. 桥面不平引起车桥系统随机振动车速因素分析. 振动. 测试与诊断, 2018, 38(6): 1223-1297 (Gui Shuirong, Zhang Zhengtao, Chen Shuisheng, et al. Influence analysis of vehicle speeds on random vibration of vehicle-bridge coupling systems caused by deck irregularity. Journal of Vibration,Measurement &Diagnosis, 2018, 38(6): 1223-1297 (in Chinese)
    [31] 翟婉明. 车辆-轨道耦合动力学. 北京: 科学出版社, 2007

    Zhai Wanming. Vehicle-track Coupling Dynamics. Beijing: Science Press, 2007 (in Chinese)
    [32] 姚卫星. 结构疲劳寿命分析. 北京: 科学出版社, 2019

    Yao Weixing. Fatigue Life Estimation of Structures. Beijing: Science Press, 2019 (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  182
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 录用日期:  2021-12-18
  • 网络出版日期:  2021-12-19
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回