EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据驱动的全线控底盘纵臂式悬架系统研究

姚淇 李全通 杜秋月 陈松 王翔宇 詹伟梁 尹思维

姚淇, 李全通, 杜秋月, 陈松, 王翔宇, 詹伟梁, 尹思维. 基于数据驱动的全线控底盘纵臂式悬架系统研究. 力学学报, 2022, 54(7): 1880-1895 doi: 10.6052/0459-1879-21-624
引用本文: 姚淇, 李全通, 杜秋月, 陈松, 王翔宇, 詹伟梁, 尹思维. 基于数据驱动的全线控底盘纵臂式悬架系统研究. 力学学报, 2022, 54(7): 1880-1895 doi: 10.6052/0459-1879-21-624
Yao Qi, Li Quantong, Du Qiuyue, Chen Song, Wang Xiangyu, Zhan Weiliang, Yin Siwei. Research on trailing arm suspension system of full X-by-wire control chassis based on data drive. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1880-1895 doi: 10.6052/0459-1879-21-624
Citation: Yao Qi, Li Quantong, Du Qiuyue, Chen Song, Wang Xiangyu, Zhan Weiliang, Yin Siwei. Research on trailing arm suspension system of full X-by-wire control chassis based on data drive. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1880-1895 doi: 10.6052/0459-1879-21-624

基于数据驱动的全线控底盘纵臂式悬架系统研究

doi: 10.6052/0459-1879-21-624
基金项目: 国家自然科学基金(51805009)和山东省重大科技创新工程项目(2019TSLH0701)资助
详细信息
    作者简介:

    杜秋月, 副教授, 主要研究方向: 汽车动力学与控制. E-mail: duqiuyue@btbu.edu.cn

  • 中图分类号: U463.33

RESEARCH ON TRAILING ARM SUSPENSION SYSTEM OF FULL X-BY-WIRE CONTROL CHASSIS BASED ON DATA DRIVE

  • 摘要: 汽车在越野类极限路况下行驶, 对车身高度有一定范围的调节需求, 传统悬架方案与全线控底盘进行技术融合时, 存在机构运动干涉、底盘升降过程中车轮外倾程度过大、车轮发生侧向位移等现象, 易导致轮胎过度磨损, 致使行驶失稳. 将车身高度变化对轮胎侧向参数的影响转化为车轮纵向滚动, 进而实现稳定的大行程车身高度调节, 是解决上述问题的关键. 本研究建立整车七自由度动力学模型, 对悬架系统导向机构展开力学分析, 集两者作为系统研究的输入信息; 通过正弦波激振台对弹性元件、减振器进行相关特性参数获取, 基于数据驱动开展一体化电动轮的运动学仿真测试, 包括对悬架系统关键铰接位置进行力学性能分析、对电动轮整体结构进行运动学特性研究, 以此定义系统关键性能指标, 结合理论研究与仿真测试, 确定双纵臂式主动悬架系统方案. 仿真结果与实车验证综合表明, 搭载本研究系统方案的全线控平台, 进行大行程高度调节过程中, 车轮外倾问题得到有效解决, 一体化电动轮具备良好的独立运行能力, 本研究对提高车辆在极限路况下的通过性具有重要意义.

     

  • 图  1  一体化电动轮结构图

    Figure  1.  Integrated electric wheel structure diagram

    图  2  车辆系统垂向动力学模型

    Figure  2.  Vehicle system vertical dynamics model

    图  3  纵臂式悬架结构

    Figure  3.  Trailing arm suspension structure

    图  4  结构简图

    Figure  4.  Structure diagram

    图  5  磁流变阻尼器特性测试

    Figure  5.  Magnetorheological damper characteristic test

    图  6  阻尼力特性: 变电流, 固定频率1 Hz, 振幅50 mm

    Figure  6.  Damping force characteristics: variable current, fixed frequency 1 Hz, amplitude 50 mm

    图  7  阻尼特性: 变电流, 固定频率1 Hz, 振幅50 mm

    Figure  7.  Damping characteristics: variable current, fixed frequency 1 Hz, amplitude 50 mm

    图  8  阻尼力特性: 变频率, 固定电流0.6 A, 振幅50 mm

    Figure  8.  Damping force characteristics: variable frequency, fixed current 0.6 A, amplitude 50 mm

    图  9  阻尼特性: 变频率, 固定电流0.6 A, 振幅50 mm

    Figure  9.  Damping characteristics: variable frequency, fixed current 0.6 A, amplitude 50 mm

    图  10  阻尼力特性: 变振幅, 固定电流0.3 A, 频率1 Hz

    Figure  10.  Damping force characteristics: variable amplitude, fixed current 0.3 A, frequency 1 Hz

    图  11  阻尼特性: 变振幅, 固定电流0.3 A, 频率1 Hz

    Figure  11.  Damping characteristics: variable amplitude, fixed current 0.3 A, frequency 1 Hz

    图  12  空气弹簧压力随空气弹簧高度变化的关系

    Figure  12.  The relationship between air spring pressure and air spring height

    图  13  空气弹簧作用力随空气弹簧高度变化的关系

    Figure  13.  The relationship between the force of the air spring and the height of the air spring

    图  14  减振器角度对$ O_{1} $$ O_{2} $处受力影响

    Figure  14.  The impact of the shock absorber angle on the force at $ O_{1} $ and $ O_{2} $

    15  增量调整对A~D点的受力影响

    15.  The influence of incremental adjustment on the force on points A~D

    图  16  臂长增量减振器受力影响

    Figure  16.  The arm length incremental shock absorber is affected by the force

    图  17  参数增量对车轮纵向位移的影响

    Figure  17.  The influence of parameter increment on the longitudinal displacement of the wheel energy

    图  18  参数增量对车轮动能的影响

    Figure  18.  The influence of parameter increment on wheel kinetic energy

    图  19  垂向行程中车轮特性曲线

    Figure  19.  Wheel characteristic curve in the vertical process

    图  20  一体化电动轮

    Figure  20.  Integrated electric wheel

    图  21  全矢量线控平台

    Figure  21.  Full vector X-by-wire control platform

    图  22  前轴升降

    Figure  22.  Front axle lift

    图  23  车身单侧升降

    Figure  23.  Single side lift

    图  24  底盘整体升降

    Figure  24.  Overall lift of the chassis

    表  1  空气弹簧测试结果

    Table  1.   Air spring test results

    Initial
    pressure/
    MPa
    Downward pressure
    displacement of the
    exciter head/mm
    Air spring
    force/
    N
    Intracapsular
    air pressure/
    MPa
    Effective
    area/
    mm2
    0.308590.302863.3
    1010640.313432.3
    2011360.323550
    3011960.333624.2
    4012630.343714.7
    5013380.363716.7
    6014120.383715.8
    7014960.403740
    8016240.423866.7
    9017260.443922.7
    10018170.4653907.5
    0.6019970.603328.3
    1023470.623785.5
    2024760.643868.8
    3025940.6653900.8
    4027800.703971.4
    5028520.733906.8
    6029660.753954.7
    7030830.774003.9
    8032860.824007.3
    9034630.844122.6
    10036720.904080.0
    下载: 导出CSV

    表  2  基础悬架空间位置坐标值(X, Y, Z)

    Table  2.   The coordinate value of the space position of the base suspension (X, Y, Z)

    Critical hard pointsXYZ
    upper longitudinal arm front articulation point A−102.96−8115
    lower longitudinal arm front articulation point B−102.96−8−65
    lower longitudinal arm posterior articulation point C−54.21−200−65
    upper longitudinal arm rear articulation point D−54.21−200115
    hinge point up the shock absorber O1−55.46−108.5488
    hinge point under the shock absorber O1−55.46−70.5−25
    下载: 导出CSV
  • [1] 李亮, 王翔宇, 程硕等. 汽车底盘线控与动力学域控制技术. 汽车安全与节能学报, 2020, 11(2): 143-160 (Li Liang, Wang Xiangyu, Cheng Shuo, et al. Technologies of control-by-wire and dynamic domain control for automotive chassis. Journal of Automotive Safety and Energy Saving, 2020, 11(2): 143-160 (in Chinese) doi: 10.3969/j.issn.1674-8484.2020.02.001

    Li Liang, Wang Xiangyu, Cheng Shuo, et al. Technologies of control-by-wire and dynamic domain control for auto-­motive chassis. Journal of Automotive Safety and EnergySaving, 2020, 11(02): 143-160 (in Chinese) doi: 10.3969/j.issn.1674-8484.2020.02.001
    [2] 陈国迎, 郑宏宇. 分布式全线控电动汽车的底盘集成控制. 华南理工大学学报(自然科学版), 2015, 43(11): 87-95 (Chen Guoying, Zheng Hongyu. Integrated chassis control of distributed drive-by-wire electric vehicles. Journal of South China University of Technology (Natural Science Edition), 2015, 43(11): 87-95 (in Chinese)

    C-hen Guoy-ing, Zheng Hongyu. Integrated chassis control of distributed drive-by-wire electric vehicles. Journal of South China Univer-sity of Technology (Natural Science Edition), 2015, 43(11): 87-95 (in Chinese)
    [3] 李韶华, 王伟达. 车辆动力学与控制研究进展. 动力学与控制学报, 2021, 19(3): 1-4 (Li Shaohua, Wang Weida. Research advance in vehicle dynamics and control. Journal of Dynamics and Control, 2021, 19(3): 1-4 (in Chinese)

    Li Shaohua, Wang Weida. Research adv-ance in vehicle dynamics and control. Jour-nal of Dynamics and Control, 2021, 19(3): 1-4. (in Chinese)
    [4] 张友朋. 全线控四轮独立电动汽车状态估计与路径跟踪控制研究. [博士论文]. 长春: 吉林大学, 2019

    Zhang Youpeng. Res-earch on state estimation and path following control of full X-by-wire electric vehicles. [PhD Thesis]. Changchun: Jilin University, 2019 (in Chinese)
    [5] 姜鹏. 汽车悬架系统的仿真分析与参数优化设计. [博士论文]. 杭州: 浙江大学, 2006

    Jiang Peng. The simulation study and parameter optimization on vehicle suspension system. [PhD Thesis]. Hangzhou: Zhejiang University, 2006 (in Chinese)
    [6] 丁晓林, 王震坡, 张雷. 四轮轮毂电机驱动电动汽车驱动系统参数多目标优化匹配. 机械工程学报, 2021, 57(8): 195-204 (Ding Xiaolin, Wang Zhenpo, Zhang Lei. Powertrain sizing for four-wheel-independent-actuated electric vehicles based on multi-objective optimization. Journal of Mechanical Engineering, 2021, 57(8): 195-204 (in Chinese)

    Ding Xiaolin, Wang Zhenpo, Zhang Lei. Powe-rtrain sizing f-or four-wheel-independent-actuated electric vehicles based on multi-objective optimization. Journal of Mechanical Engineerin-g, 2021, 57(08): 195-204 (in Chinese
    [7] 张泽星. 基于驾驶风格的个性化全线控电动汽车控制策略研究. [博士论文]. 长春: 吉林大学, 2020

    Zhang Zexing. Study on personalized control strategy of full X-by-wireelectric vehicle based on driving style. [PhD Thesis]. Changchun: Jilin University, 2020 (in Chinese)
    [8] 张冰. 全线控电动汽车不同行驶模式的轨迹跟踪控制研究. [博士论文]. 长春: 吉林大学, 2020

    Zhang Bing Trajectory tracking control research on full X-by-Wire electric vehicle based on different maneuvering modes. [PhD Thesis]. Changchun: Jilin University, 2020 (in Chinese)
    [9] 刘欢, 李韶华, 张培强. 刚柔耦合特种车辆越障行驶动力学分析及悬架优化. 动力学与控制学报, 2021, 19(3): 74-82 (Liu Huan, Li Shaohua, Zhang Peiqiang. Rigid flexible coupling special vehicle dynamic analysis and suspension optimization of obstacle crossing. Journal of Dynamics and Control, 2021, 19(3): 74-82 (in Chinese)

    Liu Huan, Li Shaohua, Zhang Peiqiang. Rigid flexi-ble coupling s-pecial vehicle dynamic analysis and suspe-nsionopt-imization o-f obstacle crossing. Journal of Dyna-mics and Control, 2021, 19(03): 74-82. (in Chinese)
    [10] Mahmoodabadi MJ, Farhadi F, Sampour S. Firefly algorithm based optimum design of vehicle suspension systems. International Journal of Dynamics and Control, 20-19, 7(1): 134-146
    [11] 周创辉. 一种新型液电馈能式汽车悬架系统的设计与研究. [博士论文]. 长沙: 湖南大学, 2018

    Zhou Chuanghui. Design and study on a novel hydraulic-electrical regenerative suspension system for vehicles. [PhD Thesis]. Changsha: Hunan University, 2018 (in Chinese)
    [12] Zhang L, Zhang Z, Wang Z, et al. Chassis coordinated control for full X-by-wire vehicles-A review. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-25 doi: 10.1186/s10033-020-00524-5
    [13] 郭孔辉. 汽车操纵动力学. 长春: 吉林科学技术出版社, 1991

    Guo Konghui. Vehicle Handling Dynamics. Changchun: Jilin Science and Technology Press, 1991 (in Chinese)
    [14] 李韶华, 张兵, 黄玉亭. 刚柔耦合重型汽车建模及通过连续减速带的平顺性分析. 动力学与控制学报, 2018, 16(5): 397-402 (Li Shaohua, Zhang Bing, Huang Yuting. Modeling of rigid-flexible coupled heavy-duty vehicle and ride comfort analysis when passing through continuous speed bumps. Journal of Dynamics and Control, 2018, 16(5): 397-402 (in Chinese)

    Li Shaohua, Zhang Bing, Huang Yuting. Modeling of rigid-flexible coupled heavy-duty vehicle a-nd ride comfort analysis when passing through continuo-us speed bumps. Journal of Dynamics and Control, 201-8, 16(05): 397-402. (in Chinese))
    [15] 李小彭, 李凡杰, 杨舲雪等. 车辆悬架系统的优化设计与动力学特性分析. 东北大学学报(自然科学版), 2020, 41(8): 1097-1102 (Li Xiaopeng, Li Fanjie, Yang Lingxue, et al. Optimization design and dynamics analysis of vehicle suspension system. Journal of Northeastern University (Natural Science), 2020, 41(8): 1097-1102 (in Chinese)

    Li Xiaopeng, Li Fanjie, Yang Lingxue, et al. Optimizatio-n design and dynamics analysis of veh-icle suspension system. Journal of Northeastern Univers-ity (Natural Science), 2020, 41(08): 1097-1102 (in Chinese)
    [16] 王震, 祝恒佳, 陈晓宇等. 基于交叉型双气室空气互联悬架的全地形车侧倾特性研究. 力学学报, 2020, 52(4): 996-1006 (Wang Zhen, Zhu Hengjia, Chen Xiaoyu, et al. Roll characteristics of all-terrain vehicle based on cross-type double-chamber air interconnection suspension. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 996-1006 (in Chinese)

    Wang Zhen, Zhu Hengjia, Chen Xiaoyu, et al. Roll characteristics of all-terrain vehicle based on cross-type double-chamber air interconnection suspension. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(04): 996-1006 (in Chinese)
    [17] 纪秀业, 侯献晓, 袁晓红. 基于ADAMS的某乘用车悬架系统匹配计算. 机械设计, 2021, 38(7): 90-95 (Ji Xiuye, Hou Xianxiao, Yuan Xiaohong. Matching calculation of the passenger vehicle’s suspension system based on AD-AMS. Journal of Machine Design, 2021, 38(7): 90-95 (in Chinese)

    Ji Xiuye, Hou Xianxia-o, Yuan Xiaohong. Matching calculation of the passenger ve-hicle’s suspension system based on AD-AMS. Journal of Mac-hine Design, 2021, 38(07): 90-95(in Chinese)
    [18] 张智, 施晓芬, 李俊文. 汽车悬架系统的运动仿真及优化设计. 机械设计, 2015, 32(9): 30-33 (Zhang Zhi, Shi Xiaofen, Li Junwen. Kinematic simulation and structuraloptimization of vehicle suspension. Journal of Machine Design, 2015, 32(9): 30-33 (in Chinese)

    Zhang Zhi, ShiXiaofen, Li Junwen. Kinematic simulation and structuraloptimization of v-ehicle suspension. Journal of MachineDesign, 2015, 32(09): 30-33 (in Chinese)
    [19] 王军年, 刘鹏, 杨钫等. 轮毂电机驱动电动汽车双横臂前悬架运动学优化. 汽车工程, 2021, 43(3): 305-312 (Wang Junnian, Liu Peng, Yang Fang, et al. Kinematics optimization of double wishbone front suspension for in-wheel motor-driven electric vehicles. Automotive Engineering, 2021, 43(3): 305-312 (in Chinese)

    W-ang Junnian, Liu Peng, Yang Fang, et al. Kinematics opt-imization of double wishbone front suspension for In-wheel Motor⁃Driven electric vehicles. Automotive Engineerin-g, 2021, 43(03): 305-312 (in Chinese)
    [20] 李凡杰, 李小彭, 沃旭等. 混联汽车悬架系统减振性能分析与优化. 东北大学学报(自然科学版), 2021, 42(8): 1098-1104 (Li Fanjie, Li Xiaopeng, Wo Xu, et al. Analysisand optimization of damping performance of suspensionsystem of hybrid connected vehicle. Journal of Northeastern University (Natural Science), 2021, 42(8): 1098-1104 (in Chinese)

    Li Fanjie, Li Xiaopeng, Wo Xu, et al. Analysisand optimization of damping performance of suspensionsystem of hybrid connec-ted vehicle. Journal of Northea-stern University (Natural Science), 2021, 42(08): 1098-1-104 (in Chinese)
    [21] 袁宝峰, 王成恩, 邹猛等. 火星车主动悬架设计及蠕动脱困策略. 吉林大学学报(工学版), 2021, 51(1): 154-162 (Yuan Baofeng, Wang Chengen, Zou Meng, et al. Design of the active suspension of the mars rover and the strategy of creeping relief. Journal of Jilin University Engineering and Technology Edition), 2021, 51(1): 154-162 (in Chinese)

    Yuan Baofeng, Wang Chengen, Zou Meng, et al. Design of the active suspension of the mars rover and the strategy of creeping relief. Journal of Jilin University Engineering and Technology Edition), 2021, 51(1): 154-1-62 (in Chinese)
    [22] 张农, 王少华, 张邦基等. 液压互联悬架参数全局灵敏度分析与多目标优化. 湖南大学学报(自然科学版), 2020, 47(10): 1-9 (Zhang Nong, Wang Shaohua, Zhang Bangji, et al. Global sens-itivity analysis and multi-objective optimization of hydraulically interconnected suspension parameters. Journal of Hunan University (Natural Sciences), 2020, 47(10): 1-9 (in Chinese)

    Zhang Nong, Wang Shaohua, Zhang Bangji, et al. Global sens-itivity analysis and multi-objective opti-mization of hydraulica-lly interconnected suspension para-meters. Journal of Hunan University (Natural Sciences), 2020, 47(10): 1-9 (in Chinese)
    [23] 陈龙, 董红亮, 李利明. 适合轮毂电机驱动的新型悬架系统设计. 振动与冲击, 2015, 34(8): 174-180 (Chen Long, Dong Hongliang, Li Liming. A new type suspension design suitable for an in-wheel motor driving system. Journal of Vibration and Shock, 2015, 34(8): 174-180 (in Chinese)

    Chen Long, Dong Hon-gliang, Li Liming. A new type suspension de-sign suitable for an in-wheel motor driving system. Jou-rnal of Vibration and Shock, 2015, 34(08): 174-180 (in Chinese)
    [24] 陆建辉, 周孔亢, 郭立娜等. 电动汽车麦弗逊前悬架设计及参数优化. 机械工程学报, 2012, 48(8): 98-103 (Lu Jianhui, Zhou Kongkang, Guo Lina, et al. Design and parametric optimization of mcPherson front suspension of electric vehicle. Journal of Mechanical Engineering, 2012, 48(8): 98-103 (in Chinese)

    LuJianhui, Zho-u Kongkang, Guo Lina, et al. Design and p-arametric optimiz-ation of mcPherson front suspension of electric vehicle. Journa-l of Mechanical Engineering, 201-2, 48(8): 98-103 (in Chinese)
    [25] 李芳. 悬架结构参数优化及基于卡尔曼滤波的主动悬架控制研究. [博士论文]. 长春: 吉林大学, 2017

    Li Fang. Optimization of suspension structure parameters and control strategy research of active suspension based on kalman filte. [PhD Thesis]. Changchun: Jilin University, 2017 (in Chinese)
    [26] 李杰, 贾长旺, 成林海等. 轮毂电机电动汽车主动悬架约束状态反馈H(∞)控制. 吉林大学学报(工学版), 2022, 出版中, doi: 10.13229/j.cnki.jdxbgxb20210528

    Li Jie, Jia Changwang, Cheng Linhai, et al. Constrained state feedback H(∞) control for active suspension of in-wheel motor electric vehicle. Journal of Jilin University (Engineering and Technology Edition), 2022, in press, doi: 10.13229/j.cnki.jdxbgxb20210528 (in Chinese)
    [27] 潘惠惠. 汽车主动悬架系统的非线性控制研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2017

    Pan Huihui. Nonlinear control for vehicle active suspension systems. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese)
    [28] 方瑞华, 解跃青, 雷雨成. 空气悬架理论及其关键技术. 同济大学学报(自然科学版), 2003, 9: 1072-1076 (FangRuihua, Xie Yueqing, Lei Yucheng. Air suspension technology and developling trend. Journal of Tongji University, 2003, 9: 1072-1076 (in Chinese) doi: 10.3321/j.issn:0253-374X.2003.09.014

    FangRuihua, Xi-e Yueqing, Lei Yucheng. Air suspension tech-nology and dev-elopling trend. Journal of Tongji Univers-ity, 2003(09): 1072-1076 (in Chinese)) doi: 10.3321/j.issn:0253-374X.2003.09.014
    [29] 白先旭, 杨森. 磁流变半主动落锤冲击缓冲系统的“软着陆”控制试验与分析. 机械工程学报, 2021, 57(1): 121-127

    Bai Xianxu, Yang Sen. Experimental test and analysis of “soft-landing” control for drop-induced shock systems using magnetorh-eological energy absorber. Journalof Mechanical Engineering, 2021, 57(1): 121-127 (in Chinese)
    [30] 王震坡, 丁晓林, 张雷. 四轮轮毂电机驱动电动汽车驱动防滑控制关键技术综述. 机械工程学报, 2019, 55(12): 99-120 (Wang Zhenpo, Ding Xiaolin, Zhang Lei. Overview on key technologies of acceleration slip regulation for four-wheel-independently-actuated electric vehicles. Journal of Mechanical Engineering, 2019, 55(12): 99-120 (in Chinese)

    Wa-ng Zhenpo, Ding Xiaolin, Zhang Lei. Overvie-w on key tech-n-ologies of acceleration slip regulation forfour-wheel-independ-ently-actuated electric vehicles. Journ-al of Mechanical Engine-ering, 2019, 55(12): 99-120 (in Chinese)
    [31] 李韶华, 罗海涵, 冯桂珍等. 电动汽车机-电-路耦合系统建模及动力学分析. 机械工程学报, 2021, 57(12): 51-61 (Li Shaohua, Luo Haihan, Feng Guizhen, et al. Modeling and dynamic analysis of mechanic-electro-road coupling system of electric vehicles. Journal of Mechanical Engineering, 2021, 57(12): 51-61 (in Chinese)

    Li Shaohu-a, Luo Haihan, Feng Guizhen, et al. Modelin-g and dynamic analysis of mechanic-electro-road coupli-ng system of electric vehicles. Journal of Mechanical E-ngineering, 2021, 57(12): 51-61 (in Chinese))
    [32] 李韶华, 冯桂珍, 丁虎. 考虑胎路多点接触的电动汽车路面-耦合系统振动分析. 力学学报, 2021, 53(9): 2554-2568 (Li Shaohua, Feng Guizhen, Ding Hu. Vibration analysis of electric vehicle-road coupling system considering tire-road multipoint contact. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2554-2568 (in Chinese)

    Li Sha-ohua, Feng Guizhen, Dinghu. Vibration analys-is of electric ve-hicle-road coupling system considering t-ire-road multi-point c-ontact. Chinese Journal of Theoreti-cal and Applied Mechanic-s, 2021, 53(09): 2554-2568 (in Chinese))
    [33] Öksüztepe E. In-wheel switched reluctance motor design for electric vehicles by using a pareto-based multiobjective differential evolution algorithm. IEEE Transactions on Vehicular Technology, 2016, 66(6): 4706-4715
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  875
  • HTML全文浏览量:  344
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 录用日期:  2022-03-07
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回