EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航行体梯度密度式头帽结构设计及降载性能分析

施瑶 刘振鹏 潘光 高兴甫

施瑶, 刘振鹏, 潘光, 高兴甫. 航行体梯度密度式头帽结构设计及降载性能分析. 力学学报, 2022, 54(4): 939-953 doi: 10.6052/0459-1879-21-620
引用本文: 施瑶, 刘振鹏, 潘光, 高兴甫. 航行体梯度密度式头帽结构设计及降载性能分析. 力学学报, 2022, 54(4): 939-953 doi: 10.6052/0459-1879-21-620
Shi Yao, Liu Zhenpeng, Pan Guang, Gao Xingfu. Structural design and load reduction performance analysis of gradient density head cap of vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953 doi: 10.6052/0459-1879-21-620
Citation: Shi Yao, Liu Zhenpeng, Pan Guang, Gao Xingfu. Structural design and load reduction performance analysis of gradient density head cap of vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953 doi: 10.6052/0459-1879-21-620

航行体梯度密度式头帽结构设计及降载性能分析

doi: 10.6052/0459-1879-21-620
基金项目: 国家自然科学基金(U21B2055, 52171324)和中央高校基本业务费(3102019JC006)资助项目
详细信息
    作者简介:

    施瑶, 副研究员, 主要研究方向: 跨介质水动力特性研究. E-mail: shiyao@nwpu.edu.cn

  • 中图分类号: TB126

STRUCTURAL DESIGN AND LOAD REDUCTION PERFORMANCE ANALYSIS OF GRADIENT DENSITY HEAD CAP OF VEHICLE

  • 摘要: 针对航行体在以大于100 m/s的速度高速入水过程中承受巨大的冲击载荷可能导致的结构损坏、弹道失控等现象, 而现有的缓冲措施降载能力有限的难题, 本文设计了一种航行体高速入水梯度密度式缓冲头帽, 确保航行体能够高速安全入水, 并给出了详细的设计过程. 同时基于ALE (arbitrary Lagrangian-Eulerian)算法建立了航行体带缓冲头帽高速入水数值计算模型, 且数值计算的结果与试验测试数据具有较好的一致性. 然后在此基础上, 开展了航行体带梯度密度式缓冲头帽高速入水降载特性的数值研究, 探究了双层缓冲件不同分层厚度、正负密度梯度排列以及层间密度差等重要参数对缓冲头帽能量吸收以及缓冲降载效果的影响规律, 并进行了大尺度模型高速入水冲击测试试验, 根据航行体模型干模态分析时的二阶弯曲模态固有频率对试验数据进行滤波处理. 研究结果表明, 在本文所研究的范围内, 分层的缓冲件相比较于不分层的缓冲件表现出更强的冲击能量吸收效果, 且缓冲件吸收的冲击能量随着分层数的增加而增加; 负密度梯度排列的缓冲件其缓冲能力强于正密度梯度的缓冲件; 当层间密度差越大时, 冲击能量的损耗也将越大, 缓冲头帽的降载效果越好.

     

  • 图  1  缓冲头帽

    Figure  1.  Buffer head cap

    图  2  航行体

    Figure  2.  Vehicle

    图  3  罩壳

    Figure  3.  Nose cap

    图  4  梯度密度式缓冲件

    Figure  4.  Gradient density buffer

    图  5  固定垫

    Figure  5.  Locating structure

    图  6  连接件

    Figure  6.  Connector

    图  7  泡沫的能量吸收率与密度的关系

    Figure  7.  Relationship between energy absorptivity and density of foam

    8  不同N值的计算结果

    8.  Calculation results of different N values

    图  9  计算域(单位: m)

    Figure  9.  Computational domain (unit: m)

    图  10  局部网格

    Figure  10.  Partial mesh

    图  11  单层缓冲件垂直入水等效应力

    Figure  11.  Effective stress of vertical water entry of single-layer buffer

    图  12  双层缓冲件垂直入水等效应力

    Figure  12.  Effective stress of vertical water entry of double-layer buffer

    图  13  缓冲件内能对比

    Figure  13.  Internal energy comparison of buffer

    图  14  双层缓冲件内能

    Figure  14.  Internal energy of double-layer buffer

    图  15  不同分层厚度缓冲件

    Figure  15.  Buffer with different layer thickness

    图  16  缓冲件内能

    Figure  16.  Internal energy of buffer

    图  17  轴向加速度

    Figure  17.  Axial acceleration

    图  18  应力传播示意图

    Figure  18.  Schematic diagram of stress propagation

    图  19  轴向加速度

    Figure  19.  Axial acceleration

    图  20  不同分层数缓冲件空泡对比

    Figure  20.  Comparison of cavitation in buffer parts with different delamination numbers

    图  21  缓冲件内能

    Figure  21.  Internal energy of buffer

    图  22  轴向载荷

    Figure  22.  Axial force

    图  23  模型发射装置

    Figure  23.  Model launcher

    图  24  试验模型

    Figure  24.  Model

    图  25  罩壳与梯度密度式缓冲件

    Figure  25.  Nose cap and gradient density buffer

    图  26  原始数据

    Figure  26.  Raw data

    图  27  滤波结果

    Figure  27.  Filter data

    图  28  仿真与试验空泡对比

    Figure  28.  Cavitation comparison between simulation and experiment

    图  29  仿真与试验加速度对比

    Figure  29.  Acceleration comparison between simulation and experiment

    图  30  轴向加速度

    Figure  30.  Axial acceleration

    图  31  径向加速度曲线

    Figure  31.  Radial acceleration

    图  32  双层缓冲件破碎情况

    Figure  32.  Breakage of double-layer buffer

    表  1  航行体的材料参数

    Table  1.   Material parameters of vehicle

    Density/(kg·m−3)Young’s modulus/PaPoisson’s ratioYield stress/PaTangent modulus/Pa
    27007.5×10100.332.75×1081.33×109
    下载: 导出CSV

    表  2  罩壳材料参数

    Table  2.   Material parameters of nose cap

    Density/(kg·m−3)Young’s modulus/PaPoisson’s ratioYield stress/PaFailure strain
    11603.5×1090.341.01×1080.1
    下载: 导出CSV

    表  3  连接件材料参数

    Table  3.   Material parameters of connector

    Density/(kg·m−3)Young’s modulus/PaPoisson’s ratioYield stress/PaTangent modulus/Pa
    78302.07×10110.34×1095×1010
    下载: 导出CSV

    表  4  缓冲件材料参数

    Table  4.   Material parameters of buffer

    Density/(kg·m−3)Young’s modulus/PaPoisson’s ratioTensile stress cutoff/Pa
    70 9.529×107 0.02 1.25×106
    90 1.290×108 0.02 1.60×106
    110 1.643×108 0.02 1.95×106
    下载: 导出CSV

    表  5  水的材料参数

    Table  5.   Material parameters of water

    MaterialDensity/(kg·m−3)Pressure cutoff/PaViscosity coefficient
    water 998.21 −10.0 8.684×10−4
    下载: 导出CSV

    表  6  水状态方程参数

    Table  6.   State equation parameters of water

    MaterialC/(m·s−1)S1S2S3γ0AE/JV0
    water 1480 2.56 −1.986 0.226 0.5 0.47 0 1
    下载: 导出CSV

    表  7  空气的材料参数

    Table  7.   Material parameters of air

    MaterialDensity/(kg·m−3)Pressure cutoff/PaViscosity coefficient
    air1.25−1.01.7465×10−5
    下载: 导出CSV

    表  8  空气状态方程参数

    Table  8.   State equation parameters of air

    MaterialC0, C1, C2, C3, C6C4, C5E/JV0
    air 0 0.4 2.5×105 1
    下载: 导出CSV

    表  9  试验工况

    Table  9.   Situation of experiment

    SituationVelocity/(m·s−1)Angle/(°)Density/(kg·m−3)
    1 100 60 no buffer
    2 100 60 51
    3 100 60 71
    4 100 60 51/71
    5 100 60 71/51
    下载: 导出CSV

    表  10  降载性能对比

    Table  10.   Comparison of load reduction performance

    TestPeak of axial acceleration/gReduction rate of peak/%Peak of radial acceleration/gReduction rate of peak/%
    1−414.52−177.95
    2−388.136.37−56.6568.17
    3−327.9220.89−42.1176.33
    4−297.0728.33−36.1879.67
    5−279.3532.61−34.2380.76
    下载: 导出CSV
  • [1] 赵九龙, 闫发锁, 樊磊. 基于改进Wagner方法的轴对称体入水“后时段”砰击载荷数值计算. 船舶力学, 2016, 20(11): 1412-1419 (Zhao Jiulong, Yan Fasuo, Fan Lei. Numerical calculation of the slamming load for axisymmetric geometries during the later entry time based on generalized Wagner theory. Journal of Ship Mechanics, 2016, 20(11): 1412-1419 (in Chinese)
    [2] 李佳川, 魏英杰, 王聪等. 不同扰动角速度高速射弹入水弹道特性. 哈尔滨工业大学学报, 2017, 49(4): 131-136 (Li Jiachuan, Wei Yingjie, Wang Cong, et al. Water entry trajectory characteristics of high-speed projectiles with various turbulent angular velocity. Journal of Harbin Institute of Technology, 2017, 49(4): 131-136 (in Chinese)
    [3] 于鹏垚, 王天霖, 赵勇等. 二维楔形体入水冲击的水弹性分析. 哈尔滨工程大学学报, 2019, 40(4): 689-695 (Yu Pengyao, Wang Tianlin, Zhao Yong, et al. Water entry of 2-D wedge by hydroelastic theory. Journal of Harbin Engineering University, 2019, 40(4): 689-695 (in Chinese)
    [4] 孙玉松, 周穗华, 张晓兵等. 刚性球体三维高速垂直自由入水载荷. 爆炸与冲击, 2019, 39(6): 60-68 (Sun Yusong, Zhou Suihua, Zhang Xiaobing, et al. Three-dimensional vertical free high-speed water-entry impact of rigid sphere. Explosion and Shock Waves, 2019, 39(6): 60-68 (in Chinese)
    [5] 汪振, 吴茂林, 孙玉松等. 基于多介质ALE算法的柱体高速垂直入水仿真. 水下无人系统学报, 2020, 28(1): 81-88 (Wang Zhen, Wu Maolin, Sun Yusong, et al. Multi-medium ALE algorithm-based simulation of vertical and high-speed water entry of cylinder. Journal of Unmanned Undersea Systems, 2020, 28(1): 81-88 (in Chinese)
    [6] 孙玉松, 周穗华, 张晓兵等. 基于多介质ALE方法的大型弹体入水载荷特性研究. 海军工程大学学报, 2019, 31(6): 101-106 (Sun Yusong, Zhou Suihua, Zhang Xiaobing, et al. On water-impact load of heavy projectiles base on multi-material ALE method. Journal of Naval University of Engineering, 2019, 31(6): 101-106 (in Chinese) doi: 10.7495/j.issn.1009-3486.2019.06.019
    [7] 王升, 郭君, 赵琪等. 基于CEL算法全雷入水冲击建模与仿真. 水下无人系统学报, 2020, 28(1): 75-80 (Wang Sheng, Guo Jun, Zhao Qi, et al. Modeling and simulation analysis of torpedo’s water-entry impact based on CEL algorithm. Journal of Unmanned Undersea Systems, 2020, 28(1): 75-80 (in Chinese)
    [8] 孙龙泉, 王都亮, 李志鹏等. 基于CEL方法的航行体高速入水泡沫铝缓冲装置降载性能分析. 振动与冲击, 2021, 40(20): 80-88 (Sun Longquan, Wang Duliang, Li Zhipeng, et al. Analysis on load reduction performance of foamed aluminum buffer device for high speed water entry of vehicle based on a CEL method. Journal of Vibration and Shock, 2021, 40(20): 80-88 (in Chinese)
    [9] 王聪, 何春涛, 权晓波等. 空气压强对垂直入水空泡影响的数值研究. 哈尔滨工业大学学报, 2012, 44(5): 14-19 (Wang Cong, He Chuntao, Quan Xiaobo, et al. Numerical simulation of the influence of atmospheric pressure on water-cavity formed by cylinder with vertical water-entry. Journal of Harbin Institute of Technology, 2012, 44(5): 14-19 (in Chinese)
    [10] 胡明勇, 张硕, 孟庆昌等. 射弹斜入水时流体动力特性及弹体水动力冲击载荷研究. 海军工程大学学报, 2021, 33(4): 7-12 (Hu Mingyong, Zhang Shuo, Meng Qingchang, et al. Hydrodynamic characteristics of projectile oblique entry into water and hydrodynamic impulse load of projectile body. Journal of Naval University of Engineering, 2021, 33(4): 7-12 (in Chinese) doi: 10.7495/j.issn.1009-3486.2021.04.002
    [11] Yan GX, Pan G, Shi Y, et al. Experimental and numerical investigation of water impact on air-launched AUVs. Ocean Engineering, 2018, 167: 156-168 doi: 10.1016/j.oceaneng.2018.08.044
    [12] 陈光茂, 郑小波, 毋晓妮等. 二维楔形体入水问题的数值和实验研究. 舰船科学技术, 2021, 43(1): 53-60 (Chen Guangmao, Zheng Xiaobo, Wu Xiaoni, et al. Numerical and experimental study of water entry problem of two-dimensional wedge. Ship Science and Technology, 2021, 43(1): 53-60 (in Chinese)
    [13] Worthington AM, Cole RS. Impact with a liquid surface, studied by the aid of instantaneous photography. Paper II. Proceedings of the Royal Society of London Series I, 1899, 65: 153-154
    [14] 余德磊, 曹伟, 魏英杰. 回转体低速串联入水空泡及运动特性试验研究. 兵工学报, 2020, 41(7): 1375-1383 (Yu Delei, Cao Wei, Wei Yingjie. Experimental reaserch on cavitation and motion characteristics of low-speed water entry of rotary bodies in tandem. Acta Armamentarii, 2020, 41(7): 1375-1383 (in Chinese)
    [15] 宋立, 于海月, 介百冰等. 非对称头部运动体低速垂直入水试验研究. 兵器装备工程学报, 2021, 42(3): 35-39, 44 (Song Li, Yu Haiyue, Jie Baibing, et al. Experimental study of low speed vertical water entry with moving object of asymmetric head type. Journal of Ordnance Equipment Engineering, 2021, 42(3): 35-39, 44 (in Chinese) doi: 10.11809/bqzbgcxb2021.03.006
    [16] 张哲, 李振旺, 吴文婷等. 基于PVDF压电薄膜的入水冲击压力测试技术. 舰船科学技术, 2021, 43(9): 20-23 (Zhang Zhe, Li Zhenwang, Wu Wenting, et al. Research on the test technology of water impact pressure based on PVDF. Ship Science and Technology, 2021, 43(9): 20-23 (in Chinese)
    [17] 佘文轩, 郭春雨, 周广利等. 楔形体入水的时间解析-粒子图像测速测试及数值研究. 上海交通大学学报, 2020, 54(8): 839-848 (She Wenxuan, Guo Chunyu, Zhou Guangli, et al. Time-resolved PIV measurements and numerical study of water entry of a wedge. Journal of Shanghai Jiao Tong University, 2020, 54(8): 839-848 (in Chinese)
    [18] 周广利, 佘文轩, 郭春雨等. 基于TR-PIV的刚性楔形体入水砰击载荷研究. 华中科技大学学报(自然科学版), 2019, 47(3): 31-37 (Zhou Guangli, She Wenxuan, Guo Chunyu, et al. Experimental investigation of slamming load about rigid wedge entering water based on TR-PIV. J Huazhong Univ of Sci & Tech Natural Science Edition, 2019, 47(3): 31-37 (in Chinese)
    [19] 周杰, 徐胜利, 彭杰. 弹丸高速斜侵彻入水流场显示的初步研究. 高压物理学报, 2018, 32(1): 132-139 (Zhou Jie, Xu Shengli, Peng Jie. Water entry flow-field visualization of the oblique penetration of a high-speed projectile. Chinese Journal of High Pressure Physics, 2018, 32(1): 132-139 (in Chinese)
    [20] 郑强, 杨日杰, 陈佳琪等. 直升机空投鱼雷的散布误差研究. 科学技术与工程, 2017, 17(15): 65-70 (Zheng Qiang, Yang Rijie, Chen Jiaqi, et al. Research on dispersion errors of helicopter’s airdrop torpedo. Science Technology and Engineering, 2017, 17(15): 65-70 (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.15.009
    [21] 温志文, 杨智栋, 王力竟. 空投鱼雷系统建模与空中弹道仿真研究. 弹箭与制导学报, 2019, 39(5): 63-66, 72 (Wen Zhiwen, Yang Zhidong, Wang Lijing. Modeling of the air-dropped torpedo system and the simulation research of the air trajectory. Journal of Projectiles,Rockets,Missiles and Guidance, 2019, 39(5): 63-66, 72 (in Chinese)
    [22] 潘龙, 王焕然, 姚尔人等. 头部喷气平头圆柱体人水缓冲机制研究. 工程热物理学报, 2015, 36(8): 1691-1695 (Pan Long, Wang Huanran, Yao Erren, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695 (in Chinese)
    [23] 刘华坪, 余飞鹏, 韩冰等. 头部喷气影响航行体入水载荷的数值模拟. 工程热物理学报, 2019, 40(2): 300-305 (Liu Huaping, Yu Feipeng, Han Bing, et al. Numerical simulation study on influence of top jet in object water entering impact. Journal of Engineering Thermophysics, 2019, 40(2): 300-305 (in Chinese)
    [24] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析. 西北工业大学学报, 2021, 39(4): 810-817 (Zhao Hairui, Shi Yao, Pan Guang. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817 (in Chinese) doi: 10.1051/jnwpu/20213940810
    [25] 陈洋, 吴亮, 曾国伟等. 带环形密闭气囊弹体入水冲击过程的数值分析. 爆炸与冲击, 2018, 38(5): 1155-1164 (Chen Yang, Wu Liang, Zeng Guowei, et al. Numerical analysis of the water entry process of a projectile with a circular airbag. Explosion and Shock Waves, 2018, 38(5): 1155-1164 (in Chinese)
    [26] Shi Y, Gao XF, Pan G. Design and load reduction performance analysis of mitigator of AUV during high speed water entry. Ocean Engineering, 2019, 181: 314-329 doi: 10.1016/j.oceaneng.2019.03.062
    [27] Li Y, Zong Z, Sun TZ. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity. Composite Structures, 2020, 255: 112883
    [28] Wu SY, Shao ZY, Feng SS, et al. Water-entry behavior of projectiles under the protection of polyurethane buffer head. Ocean Engineering, 2020, 197: 106890
    [29] Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast alleviation. International Journal of Impact Engineering, 2007, 34: 329-347 doi: 10.1016/j.ijimpeng.2005.07.012
    [30] 霍银磊, 张新昌. 发泡塑料缓冲设计中材料的密度选择. 塑料工业, 2007, 35(5): 40-43 (Huo Yinlei, Zhang Xinchang. Density choice of foamed plastics for cushion design. China Plastics Industry, 2007, 35(5): 40-43 (in Chinese) doi: 10.3321/j.issn:1005-5770.2007.05.012
    [31] Zhang XY, Shi Y, Pan G. Stress control of cylinders during water entry based on the characteristics of bi-material interfaces. Ocean Engineering, 2020, 214: 107723 doi: 10.1016/j.oceaneng.2020.107723
    [32] Shi Y, Gao XF, Pan G. Experimental and numerical investigation of the frequency-domain characteristics of impact load for AUV during water entry. Ocean Engineering, 2020, 202: 107203 doi: 10.1016/j.oceaneng.2020.107203
  • 加载中
图(33) / 表(10)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  400
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 录用日期:  2022-01-29
  • 网络出版日期:  2022-01-30
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回