EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收缩扩张管内液氮空化流动演化过程试验研究

陈家成 陈泰然 梁文栋 谭树林 耿昊

陈家成, 陈泰然, 梁文栋, 谭树林, 耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报, 2022, 54(5): 1242-1256 doi: 10.6052/0459-1879-21-614
引用本文: 陈家成, 陈泰然, 梁文栋, 谭树林, 耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报, 2022, 54(5): 1242-1256 doi: 10.6052/0459-1879-21-614
Chen Jiacheng, Chen Tairan, Liang Wendong, Tan Shulin, Geng Hao. Experimental study on the evolution of liquid nitrogen cavitating flows through converging-diverging nozzle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1242-1256 doi: 10.6052/0459-1879-21-614
Citation: Chen Jiacheng, Chen Tairan, Liang Wendong, Tan Shulin, Geng Hao. Experimental study on the evolution of liquid nitrogen cavitating flows through converging-diverging nozzle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1242-1256 doi: 10.6052/0459-1879-21-614

收缩扩张管内液氮空化流动演化过程试验研究

doi: 10.6052/0459-1879-21-614
基金项目: 国家自然科学基金 (52009001,52079004)、中国博士后科学基金(2020M680380)、技术领域基金(2021-JCJQ-JJ-0766)、重庆市自然科学基金(cstc2021jcyj-msxmX1046)和北京理工大学青年教师学术启动计划(XSQD-202003008)资助项目
详细信息
    作者简介:

    陈泰然, 助理教授, 主要研究方向: 低温(超低温)相变与传热. E-mail: chentairan@bit.edu.cn

  • 中图分类号: O352

EXPERIMENTAL STUDY ON THE EVOLUTION OF LIQUID NITROGEN CAVITATING FLOWS THROUGH CONVERGING-DIVERGING NOZZLE

  • 摘要: 本文基于低温空化试验平台研究了收缩扩张流道内液氮非定常空化流动的演化过程. 试验采用高时空分辨率的高速摄像机对77 K液氮在不同空化数σ下空穴结构的演变进行了精细化的分析和研究. 利用试验得到的空穴长度和面积等数据, 定量分析了液氮空化流动的非定常特性与时空演变规律. 研究结果表明: (1)在相似来流速度和温度条件下, 随着空化数的减小, 液氮空化流动呈现四种典型流型, 空穴长度在2.5 h以内为初生空化、空穴长度在2.5 h ~ 7.5 h之间为片状空化、空穴长度在7.5 h ~ 15 h之间为大尺度云状空化, 空穴长度超过15 h为双云状空化, 且在大尺度云状空化和双云状空化阶段均捕捉到了回射流现象; (2)液氮空化流动从初生空化到双云状空化, 脱落空穴的尺度逐渐增大, 空穴面积脉动的幅值和准周期均有所增加. 同时, 在大尺度云状空化与双云状空化阶段, 喉口处堵塞效应对空化流动的影响显著增强; (3)相比于初生空化, 片状空化、大尺度云状空化以及双云状空化中脱落空穴的移动距离依次增加了0.97倍、2.65倍与2.68倍, 溃灭时间依次增加了1.18倍、3.59倍与4.47倍, 但溃灭速度依次减小了0.10倍、0.20倍与0.30倍. 除此之外, 对于双云状空化阶段, 存在两种显著不同的脱落空穴演化过程.

     

  • 图  1  低温空化测试平台的总体示意图(1.运行罐2.试验段3.涡轮流量计4.收集罐5.真空隔热层6.高速相机7.LED灯8.数据采集模块)

    Figure  1.  Schematic of cryogenic cavitation test rig (1. run tank 2. test section 3. turbine flowmeter 4. catch tank 5. vacuum insulation chamber 6. high speed camera 7. LED lamp 8. data collection module)

    图  2  收缩扩张流道的示意图(左)与实物图(右)

    Figure  2.  Schematic (left) and physical (right) picture of the converging-diverging (C-D) nozzle

    图  3  高速摄像机采集的试验图像与时均空穴结构图

    Figure  3.  Typical flow visualization captured camera and time-averaged cavity images

    图  4  典型液氮空化流动可视化图像及图像处理步骤(黑色阴影为空穴)

    Figure  4.  Images of liquid nitrogen cavitation flow and image processing (black shadow is the cavity)

    图  5  空穴图像沿选定的三条线上的灰度分布得到的时空处理结果

    Figure  5.  Spatio-temporal processing results obtained by analyzing grayscale distribution along the selected three lines on the cavity image

    图  6  空穴长度时均值随空化数σ的变化(Tthroat ≈ 77 K)

    Figure  6.  The variations of time-averaged cavity lengths with cavitation number σ (Tthroat ≈ 77 K)

    图  7  一个准周期内空穴形态的演化过程(Case1 ~ Case4, Tthroat ≈ 77 K)

    Figure  7.  Evolution of cavitating flow during a quasi-cycle (Case1 ~ Case4, Tthroat ≈ 77 K)

    图  8  双云状空化中上附着空穴的演变过程

    Figure  8.  Evolution of the upper attached cavity in double cloud cavity

    图  9  空穴面积随时间的脉动及其平均值(Case1 ~ Case4)

    Figure  9.  Fluctuation of cavity area with time and its average value (Case1 ~ Case4)

    图  10  5 ms内空穴面积随时间的变化(起始时刻t0为图9中的t0 + 12.5 ms时刻)

    Figure  10.  Temporal evolution of cavity area during a period of 5 ms (the starting moment t1 is the t0 + 12.5 ms moment in Fig. 9)

    图  11  t0 ~ t20时刻分别对应的瞬态空穴图像(Case1 ~ Case4)

    Figure  11.  The transient cavity images corresponding to the moments t0 ~ t20 respectively (Case1 ~ Case4)

    图  12  选定三条直线上灰度强度在30 ms内的时空分布

    Figure  12.  Spatio-temporal processing results obtained by analyzing grayscale distribution along the selected three lines on the cavity image during 30 ms

    图  13  脱落空穴沿x轴的移动距离Δxci、运动时间Δtci以及平均移动速度∆$ \stackrel{-}{v} $ci随空化数的分布(i = 1 ~ 4分别代表Case1 ~ Case4, 用4′, 4″分别代表Case4中两种脱落机制Mode Ⅰ与ModeⅡ)

    Figure  13.  Distribution of the distance, the movement time and the average movement velocity of detaching cavities moving along the x-axis with cavitation number (i = 1 ~ 4 represent Case1 ~ Case4 respectively, 4′ and 4″ are used to represent the two shedding mechanisms Mode I and Mode II in Case4, respectively)

    图  14  不同空化流型中脱落空穴脱落的演化过程

    Figure  14.  Shedding process and mechanism of cloudy cavity in different cavitation flow patterns

    表  1  低温试验台的整体运行参数[42]

    Table  1.   The overall operating parameters of the cryogenic cavitation test rig[42]

    Pressure/PaTemperature/KVelocity/(m·s−1)Cavitation numberReynolds number/105
    30 ~ 30068 ~ 86200.1 ~ 0.90.6 ~ 2.6
    下载: 导出CSV

    表  2  所选工况的试验条件与试验结果

    Table  2.   Experimental conditions and results in selected cases

    CaseThroat tempera-
    ture Tthroat/K
    Cavitation number σReynolds
    number
    Re/105
    Velocity Uthroat/(m·s−1)Up-stream
    pressure pup/kPa
    Down-stream
    pressure
    pdown/kPa
    Vapor pressure
    pthroat/kPa
    Time-averaged
    cavity lengths lcavity/h
    Time-averaged
    cavity area Scavity/h2
    177.420.601.9315.51185.82160.41101.862.251.03
    277.360.381.9215.43172.83138.14101.385.776.42
    377.500.181.9515.61156.21120.85103.0714.1524.70
    477.350.111.9215.49149.83112.14101.2716.3226.83
    下载: 导出CSV
  • [1] Brennen CE. Cavitation and Bubble Dynamics. Oxford: Oxford University Press, 1995
    [2] 黄彪, 樊亚丁, 梁文栋等. 诱导轮液氧空化热力学效应数值计算研究. 北京理工大学学报, 2021, 41(1): 53-58 (Huang Biao, Fan Yading, Liang Wengdong, et al. Numerical study on thermodynamic effect of the inducer cavitation in liquid oxygen. Transactions of Beijing Institute of Technology, 2021, 41(1): 53-58 (in Chinese)
    [3] 季斌, 程怀玉, 黄彪等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019, 49: 201906 (Ji Bin, Cheng Huaiyu, Huang Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019, 49: 201906 (in Chinese) doi: 10.6052/1000-0992-17-012
    [4] 谢庆墨, 陈亮, 张桂勇等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报, 2020, 52(4): 1045-1054 (Xie Qingmo, Chen Liang, Zhang Guiyong, et al. Analysis of unsteady cavitation flow over hydrofoil based on dynamic mode decomposition. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054 (in Chinese) doi: 10.6052/0459-1879-20-062
    [5] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018, 48: 259-298 (Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018, 48: 259-298 (in Chinese)
    [6] Wu W, Liu YL, Zhang AM, et al. Numerical investigation on underwater explosion cavitation characteristics near water wave. Ocean Engineering, 2020, 205: 107321 doi: 10.1016/j.oceaneng.2020.107321
    [7] 吴钦, 郭一梦, 刘韵晴等. 非定常空化流动及其诱导振动特性研究综述. 空气动力学学报, 2020, 38(4): 746-760 (Wu Qin, Guo Yimeng, Liu Yunqing, et al. Review on the cavitating flow-induced vibrations. Acta Aerodynamica Sinica, 2020, 38(4): 746-760 (in Chinese)
    [8] 王巍, 张庆典, 唐滔等. 射流对绕水翼云空化流动抑制机理研究. 力学学报, 2020, 52(1): 12-23 (Wang Wei, Zhang Qingdian, Tang Tao, et al. Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23 (in Chinese) doi: 10.6052/0459-1879-19-282
    [9] 王春民, 张晓光, 高玉闪等. 液氧煤油补燃发动机起动过程氧预压泵加速起旋方案研究. 推进技术, 2020, 41(7): 1441-1448 (Wang Chunmin, Zhang Xiaoguang, Gao Yushan, et al. Investigation on schemes for accelerating oxidizer boost pump during start-up of LOX/kerosene staged combustion rocket engine. Journal of Propulsion Technology, 2020, 41(7): 1441-1448 (in Chinese)
    [10] 王一伟, 黄晨光, 杜特专等. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012, 44(1): 39-48 (Wang Yiwei, Huang Chenguang, Du Tezhuan, et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39-48 (in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-139
    [11] 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究. 力学学报, 2018, 50(5): 990-1002 (Wang Changchang, Wang Guoyu, Huang Biao. Numerical simulation of shock wave dynamics in transient turbulent cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002 (in Chinese) doi: 10.6052/0459-1879-18-215
    [12] 程怀玉, 季斌, 龙新平等. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报, 2021, 53(5): 1268-1287 (Cheng Huaiyu, Ji Bin, Long Xinping, et al. LES investigation on the influence of cavitation on the evolution and characteristics of tip leakage vortex. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1268-1287 (in Chinese) doi: 10.6052/0459-1879-20-415
    [13] Li DY, Ren ZP, Li Y, et al. Thermodynamic effects on the cavitation flow of a liquid oxygen turbopump. Cryogenics, 2021, 116: 103302
    [14] Liu YY, Li XJ, Ge MH, et al. Numerical investigation of transient liquid nitrogen cavitating flows with special emphasis on force evolution and entropy features. Cryogenics, 2021, 113: 103225
    [15] Zheng ZY, Wang L, Wei TZ, et al. Experimental investigation of temperature effect on hydrodynamic characteristics of natural cavitation in rotational supercavitating evaporator for desalination. Renewable Energy, 2021, 174: 278-292 doi: 10.1016/j.renene.2021.04.038
    [16] Liang WD, Chen TR, Wang GY, et al. Investigation of unsteady liquid nitrogen cavitating flows with special emphasis on the vortex structures using mode decomposition methods. International Journal of Heat and Mass Transfer, 2020, 157: 119880
    [17] Li XJ, Shen TJ, Li PC, et al. Extended compressible thermal cavitation model for the numerical simulation of cryogenic cavitating flow. International Journal of Hydrogen Energy, 2020, 45(16): 10104-10118 doi: 10.1016/j.ijhydene.2020.01.192
    [18] Murakami M, Harada K. Experimental study of thermo-fluid dynamic effect in He II cavitating flow. Cryogenics, 2012, 52(11): 620-628 doi: 10.1016/j.cryogenics.2012.08.008
    [19] Chen TR, Mu ZD, Huang B, et al. Dynamic instability analysis of cavitating flow with liquid nitrogen in a converging-diverging nozzle. Applied Thermal Engineering, 2021, 192: 116870 doi: 10.1016/j.applthermaleng.2021.116870
    [20] Sarosdy L, Acosta A. Note on observations of cavitation in different fluids. Transactions of the ASME, 1961, 83(3): 399-400 doi: 10.1115/1.3658979
    [21] Franc JP, Janson E, Morel P, et al. Visualizations of leading edge cavitation in an inducer at different temperatures//4th International Symposium on Cavitation, CAV2001, Pasadena, CA, June 20-23, 2001
    [22] Franc JP, Rebattet C, Coulon A. An experimental investigation of thermal effects in a cavitating inducer. Journal of Fluids Engineering, 2004, 126(5): 716-723 doi: 10.1115/1.1792278
    [23] Cervone A, Testat R, Bramanti CL, et al. Thermal effects on cavitation instabilities in helical inducers. Journal of Propulsion and Power, 2005, 21(5): 893-899 doi: 10.2514/1.12582
    [24] Watanabe M, Nagaura K, Hasegawa S, et al. Direct visualization for cavitating inducer in cryogenic flow//JAXA Research and Development Memorandum, Report No. JAXA-RM-09-010, 2010
    [25] Yoshida Y, Kikuta K, Hasegawa S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen. Journal of Fluids Engineering, 2007, 129(3): 273-278 doi: 10.1115/1.2427076
    [26] Kikuta K, Yoshida Y, Hashimoto T, et al. Influence of rotational speed on thermodynamic effect in a cavitating inducer//ASME 2009 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2009: 77-83
    [27] Yoshida Y, Sasao Y, Watanabe M, et al. Thermodynamic effect on rotating cavitation in an inducer. Journal of Fluids Engineering-Transactions of the ASME, 2009, 131(9): 091302
    [28] Ito Y, Tsunoda A, Kurishita Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects. Journal of Propulsion and Power, 2016, 32(1): 71-82 doi: 10.2514/1.B35782
    [29] 项乐, 陈晖, 谭永华等. 液体火箭发动机诱导轮空化热力学效应研究. 推进技术, 2020, 41(4): 812-819 (Xiang Le, Chen Hui, Tan Yonghua, et al. Study of cavitation thermodynamic effect of liquid rocket engine inducer. Journal of Propulsion Technology, 2020, 41(4): 812-819 (in Chinese)
    [30] Wei AB, Yu LY, Gao R, et al. Unsteady cloud cavitation mechanisms of liquid nitrogen in convergent-divergent nozzle. Physics of Fluids, 2021, 33: 092116
    [31] Liang WD, Chen TR, Wang GY, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions. International Journal of Heat and Mass Transfer, 2021, 178: 121537
    [32] Hord J. Cavitation in liquid cryogens. II–hydrofoil, NASA Contractor Report, NASA CR-2156, 1973
    [33] Hord J. Cavitation in liquid cryogens. III–ogives, NASA Contractor Report, NASA CR-2242, 1973
    [34] Gustavsson JPR, Denning KC, Segal C. Hydrofoil cavitation under strong thermodynamic effect. Journal of Fluids Engineering, 2008, 130: 091303 doi: 10.1115/1.2953297
    [35] Dular M, Coutier-Delgosha O. Thermodynamic effects during growth and collapse of a single cavitation bubble. Journal of Fluid Mechanics, 2013, 736: 44-66 doi: 10.1017/jfm.2013.525
    [36] Petkovšek M, Dular M. IR measurements of the thermodynamic effects in cavitating flow. International Journal of Heat and Fluid Flow, 2013, 44: 756-763 doi: 10.1016/j.ijheatfluidflow.2013.10.005
    [37] Petkovšek M, Dular M. Observing the thermodynamic effects in cavitating flow by IR thermography. Experimental Thermal and Fluid Science, 2017, 88: 450-460 doi: 10.1016/j.expthermflusci.2017.07.001
    [38] Zhu JK, Xie HJ, Feng KS, et al. Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube. International Journal of Heat and Mass Transfer, 2017, 112: 544-552 doi: 10.1016/j.ijheatmasstransfer.2017.04.036
    [39] Zhu JK, Wang SH, Zhang XB. Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube. Physics of Fluids, 2020, 32: 012105
    [40] Ge M, Petkovsek M, Zhang G, et al. Cavitation dynamics and thermodynamic effects at elevated temperatures in a small Venturi channel. International Journal of Heat and Mass Transfer, 2021, 170: 120970
    [41] Ohira K, Nakayama T, Nagai T. Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, 2012, 52(1): 35-44 doi: 10.1016/j.cryogenics.2011.11.001
    [42] Chen TR, Chen H, Liang WD, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition. International Journal of Heat and Mass Transfer, 2019, 132: 618-630 doi: 10.1016/j.ijheatmasstransfer.2018.11.157
    [43] Huang B, Young YL. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. Journal of Fluids Engineering, 2013, 135(7): 071301
    [44] Refprop N. Reference fluid thermodynamic and transport properties. NIST Reference Database. Version 2013: 9
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  41
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回