EXPERIMENTAL STUDY ON THE EVOLUTION OF LIQUID NITROGEN CAVITATING FLOWS THROUGH CONVERGING-DIVERGING NOZZLE
-
摘要: 本文基于低温空化试验平台研究了收缩扩张流道内液氮非定常空化流动的演化过程. 试验采用高时空分辨率的高速摄像机对77 K液氮在不同空化数σ下空穴结构的演变进行了精细化的分析和研究. 利用试验得到的空穴长度和面积等数据, 定量分析了液氮空化流动的非定常特性与时空演变规律. 研究结果表明: (1)在相似来流速度和温度条件下, 随着空化数的减小, 液氮空化流动呈现四种典型流型, 空穴长度在2.5 h以内为初生空化、空穴长度在2.5 h ~ 7.5 h之间为片状空化、空穴长度在7.5 h ~ 15 h之间为大尺度云状空化, 空穴长度超过15 h为双云状空化, 且在大尺度云状空化和双云状空化阶段均捕捉到了回射流现象; (2)液氮空化流动从初生空化到双云状空化, 脱落空穴的尺度逐渐增大, 空穴面积脉动的幅值和准周期均有所增加. 同时, 在大尺度云状空化与双云状空化阶段, 喉口处堵塞效应对空化流动的影响显著增强; (3)相比于初生空化, 片状空化、大尺度云状空化以及双云状空化中脱落空穴的移动距离依次增加了0.97倍、2.65倍与2.68倍, 溃灭时间依次增加了1.18倍、3.59倍与4.47倍, 但溃灭速度依次减小了0.10倍、0.20倍与0.30倍. 除此之外, 对于双云状空化阶段, 存在两种显著不同的脱落空穴演化过程.Abstract: The objective of this paper is to investigate the unsteady characteristics of liquid nitrogen cavitating flow in a converging-diverging (C-D) nozzle via a cryogenic experimental facility. A high-speed camera with high resolution was employed to study the evolution of cavity with varying cavitation numbers σ under Tthroat ≈ 77 K. In order to quantitatively analyze the unsteady characteristics and temporal-spatial evolution, processed data such as the length and area of cavitation based on experimental images were obtained. The results show that: (1) As the cavitation number decreases and under similar free-stream velocity and temperature, the liquid nitrogen cavitation shows four typical flow patterns, with the cavitation length within 2.5 h for incipient cavitation, between 2.5 h and 7.5 h for sheet cavitation, between 7.5 h and 15 h for large-scale cloud cavitation, and over 15 h for double-cloud cavitation, Additionally, a significant phenomenon of re-entrant jet is captured in the large-scale cloud cavitation and double-cloud cavitation; (2) as the liquid nitrogen cavitating flow evolves from incipient cavitation to double-cloud cavitation, the scale of shedding cavity increases gradually, meanwhile, the amplitude and quasi-period of cavity area pulsation is getting longer. In addition, it is observed that the blockage effect on the cavitation flow at the throat is significantly enhanced in the large-scale cloud cavitation and double-cloud cavitation; (3) compared with incipient cavitation, the travel distance of shedding cavities increases by 0.97, 2.65 and 2.68 times in sheet cavitation, large-scale cloud cavitation and double-cloud cavitation, and the collapse time increases by 1.18, 3.59 and 4.47 times, respectively. For the double-cloud cavitation, there are two significantly different evolutions of shedding cavity.
-
Key words:
- liquid nitrogen /
- cavitating flows /
- cavitation patterns /
- unsteady evolution /
- experimental observation
-
图 13 脱落空穴沿x轴的移动距离Δxci、运动时间Δtci以及平均移动速度∆
$ \stackrel{-}{v} $ ci随空化数的分布(i = 1 ~ 4分别代表Case1 ~ Case4, 用4′, 4″分别代表Case4中两种脱落机制Mode Ⅰ与ModeⅡ)Figure 13. Distribution of the distance, the movement time and the average movement velocity of detaching cavities moving along the x-axis with cavitation number (i = 1 ~ 4 represent Case1 ~ Case4 respectively, 4′ and 4″ are used to represent the two shedding mechanisms Mode I and Mode II in Case4, respectively)
表 1 低温试验台的整体运行参数[42]
Table 1. The overall operating parameters of the cryogenic cavitation test rig[42]
Pressure/Pa Temperature/K Velocity/(m·s−1) Cavitation number Reynolds number/105 30 ~ 300 68 ~ 86 20 0.1 ~ 0.9 0.6 ~ 2.6 表 2 所选工况的试验条件与试验结果
Table 2. Experimental conditions and results in selected cases
Case Throat tempera-
ture Tthroat/KCavitation number σ Reynolds
number
Re/105Velocity Uthroat/(m·s−1) Up-stream
pressure pup/kPaDown-stream
pressure
pdown/kPaVapor pressure
pthroat/kPaTime-averaged
cavity lengths lcavity/hTime-averaged
cavity area Scavity/h21 77.42 0.60 1.93 15.51 185.82 160.41 101.86 2.25 1.03 2 77.36 0.38 1.92 15.43 172.83 138.14 101.38 5.77 6.42 3 77.50 0.18 1.95 15.61 156.21 120.85 103.07 14.15 24.70 4 77.35 0.11 1.92 15.49 149.83 112.14 101.27 16.32 26.83 -
[1] Brennen CE. Cavitation and Bubble Dynamics. Oxford: Oxford University Press, 1995 [2] 黄彪, 樊亚丁, 梁文栋等. 诱导轮液氧空化热力学效应数值计算研究. 北京理工大学学报, 2021, 41(1): 53-58 (Huang Biao, Fan Yading, Liang Wengdong, et al. Numerical study on thermodynamic effect of the inducer cavitation in liquid oxygen. Transactions of Beijing Institute of Technology, 2021, 41(1): 53-58 (in Chinese) [3] 季斌, 程怀玉, 黄彪等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019, 49: 201906 (Ji Bin, Cheng Huaiyu, Huang Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019, 49: 201906 (in Chinese) doi: 10.6052/1000-0992-17-012 [4] 谢庆墨, 陈亮, 张桂勇等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报, 2020, 52(4): 1045-1054 (Xie Qingmo, Chen Liang, Zhang Guiyong, et al. Analysis of unsteady cavitation flow over hydrofoil based on dynamic mode decomposition. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054 (in Chinese) doi: 10.6052/0459-1879-20-062 [5] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018, 48: 259-298 (Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018, 48: 259-298 (in Chinese) [6] Wu W, Liu YL, Zhang AM, et al. Numerical investigation on underwater explosion cavitation characteristics near water wave. Ocean Engineering, 2020, 205: 107321 doi: 10.1016/j.oceaneng.2020.107321 [7] 吴钦, 郭一梦, 刘韵晴等. 非定常空化流动及其诱导振动特性研究综述. 空气动力学学报, 2020, 38(4): 746-760 (Wu Qin, Guo Yimeng, Liu Yunqing, et al. Review on the cavitating flow-induced vibrations. Acta Aerodynamica Sinica, 2020, 38(4): 746-760 (in Chinese) [8] 王巍, 张庆典, 唐滔等. 射流对绕水翼云空化流动抑制机理研究. 力学学报, 2020, 52(1): 12-23 (Wang Wei, Zhang Qingdian, Tang Tao, et al. Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23 (in Chinese) doi: 10.6052/0459-1879-19-282 [9] 王春民, 张晓光, 高玉闪等. 液氧煤油补燃发动机起动过程氧预压泵加速起旋方案研究. 推进技术, 2020, 41(7): 1441-1448 (Wang Chunmin, Zhang Xiaoguang, Gao Yushan, et al. Investigation on schemes for accelerating oxidizer boost pump during start-up of LOX/kerosene staged combustion rocket engine. Journal of Propulsion Technology, 2020, 41(7): 1441-1448 (in Chinese) [10] 王一伟, 黄晨光, 杜特专等. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012, 44(1): 39-48 (Wang Yiwei, Huang Chenguang, Du Tezhuan, et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39-48 (in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-139 [11] 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究. 力学学报, 2018, 50(5): 990-1002 (Wang Changchang, Wang Guoyu, Huang Biao. Numerical simulation of shock wave dynamics in transient turbulent cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002 (in Chinese) doi: 10.6052/0459-1879-18-215 [12] 程怀玉, 季斌, 龙新平等. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报, 2021, 53(5): 1268-1287 (Cheng Huaiyu, Ji Bin, Long Xinping, et al. LES investigation on the influence of cavitation on the evolution and characteristics of tip leakage vortex. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1268-1287 (in Chinese) doi: 10.6052/0459-1879-20-415 [13] Li DY, Ren ZP, Li Y, et al. Thermodynamic effects on the cavitation flow of a liquid oxygen turbopump. Cryogenics, 2021, 116: 103302 [14] Liu YY, Li XJ, Ge MH, et al. Numerical investigation of transient liquid nitrogen cavitating flows with special emphasis on force evolution and entropy features. Cryogenics, 2021, 113: 103225 [15] Zheng ZY, Wang L, Wei TZ, et al. Experimental investigation of temperature effect on hydrodynamic characteristics of natural cavitation in rotational supercavitating evaporator for desalination. Renewable Energy, 2021, 174: 278-292 doi: 10.1016/j.renene.2021.04.038 [16] Liang WD, Chen TR, Wang GY, et al. Investigation of unsteady liquid nitrogen cavitating flows with special emphasis on the vortex structures using mode decomposition methods. International Journal of Heat and Mass Transfer, 2020, 157: 119880 [17] Li XJ, Shen TJ, Li PC, et al. Extended compressible thermal cavitation model for the numerical simulation of cryogenic cavitating flow. International Journal of Hydrogen Energy, 2020, 45(16): 10104-10118 doi: 10.1016/j.ijhydene.2020.01.192 [18] Murakami M, Harada K. Experimental study of thermo-fluid dynamic effect in He II cavitating flow. Cryogenics, 2012, 52(11): 620-628 doi: 10.1016/j.cryogenics.2012.08.008 [19] Chen TR, Mu ZD, Huang B, et al. Dynamic instability analysis of cavitating flow with liquid nitrogen in a converging-diverging nozzle. Applied Thermal Engineering, 2021, 192: 116870 doi: 10.1016/j.applthermaleng.2021.116870 [20] Sarosdy L, Acosta A. Note on observations of cavitation in different fluids. Transactions of the ASME, 1961, 83(3): 399-400 doi: 10.1115/1.3658979 [21] Franc JP, Janson E, Morel P, et al. Visualizations of leading edge cavitation in an inducer at different temperatures//4th International Symposium on Cavitation, CAV2001, Pasadena, CA, June 20-23, 2001 [22] Franc JP, Rebattet C, Coulon A. An experimental investigation of thermal effects in a cavitating inducer. Journal of Fluids Engineering, 2004, 126(5): 716-723 doi: 10.1115/1.1792278 [23] Cervone A, Testat R, Bramanti CL, et al. Thermal effects on cavitation instabilities in helical inducers. Journal of Propulsion and Power, 2005, 21(5): 893-899 doi: 10.2514/1.12582 [24] Watanabe M, Nagaura K, Hasegawa S, et al. Direct visualization for cavitating inducer in cryogenic flow//JAXA Research and Development Memorandum, Report No. JAXA-RM-09-010, 2010 [25] Yoshida Y, Kikuta K, Hasegawa S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen. Journal of Fluids Engineering, 2007, 129(3): 273-278 doi: 10.1115/1.2427076 [26] Kikuta K, Yoshida Y, Hashimoto T, et al. Influence of rotational speed on thermodynamic effect in a cavitating inducer//ASME 2009 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2009: 77-83 [27] Yoshida Y, Sasao Y, Watanabe M, et al. Thermodynamic effect on rotating cavitation in an inducer. Journal of Fluids Engineering-Transactions of the ASME, 2009, 131(9): 091302 [28] Ito Y, Tsunoda A, Kurishita Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects. Journal of Propulsion and Power, 2016, 32(1): 71-82 doi: 10.2514/1.B35782 [29] 项乐, 陈晖, 谭永华等. 液体火箭发动机诱导轮空化热力学效应研究. 推进技术, 2020, 41(4): 812-819 (Xiang Le, Chen Hui, Tan Yonghua, et al. Study of cavitation thermodynamic effect of liquid rocket engine inducer. Journal of Propulsion Technology, 2020, 41(4): 812-819 (in Chinese) [30] Wei AB, Yu LY, Gao R, et al. Unsteady cloud cavitation mechanisms of liquid nitrogen in convergent-divergent nozzle. Physics of Fluids, 2021, 33: 092116 [31] Liang WD, Chen TR, Wang GY, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions. International Journal of Heat and Mass Transfer, 2021, 178: 121537 [32] Hord J. Cavitation in liquid cryogens. II–hydrofoil, NASA Contractor Report, NASA CR-2156, 1973 [33] Hord J. Cavitation in liquid cryogens. III–ogives, NASA Contractor Report, NASA CR-2242, 1973 [34] Gustavsson JPR, Denning KC, Segal C. Hydrofoil cavitation under strong thermodynamic effect. Journal of Fluids Engineering, 2008, 130: 091303 doi: 10.1115/1.2953297 [35] Dular M, Coutier-Delgosha O. Thermodynamic effects during growth and collapse of a single cavitation bubble. Journal of Fluid Mechanics, 2013, 736: 44-66 doi: 10.1017/jfm.2013.525 [36] Petkovšek M, Dular M. IR measurements of the thermodynamic effects in cavitating flow. International Journal of Heat and Fluid Flow, 2013, 44: 756-763 doi: 10.1016/j.ijheatfluidflow.2013.10.005 [37] Petkovšek M, Dular M. Observing the thermodynamic effects in cavitating flow by IR thermography. Experimental Thermal and Fluid Science, 2017, 88: 450-460 doi: 10.1016/j.expthermflusci.2017.07.001 [38] Zhu JK, Xie HJ, Feng KS, et al. Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube. International Journal of Heat and Mass Transfer, 2017, 112: 544-552 doi: 10.1016/j.ijheatmasstransfer.2017.04.036 [39] Zhu JK, Wang SH, Zhang XB. Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube. Physics of Fluids, 2020, 32: 012105 [40] Ge M, Petkovsek M, Zhang G, et al. Cavitation dynamics and thermodynamic effects at elevated temperatures in a small Venturi channel. International Journal of Heat and Mass Transfer, 2021, 170: 120970 [41] Ohira K, Nakayama T, Nagai T. Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, 2012, 52(1): 35-44 doi: 10.1016/j.cryogenics.2011.11.001 [42] Chen TR, Chen H, Liang WD, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition. International Journal of Heat and Mass Transfer, 2019, 132: 618-630 doi: 10.1016/j.ijheatmasstransfer.2018.11.157 [43] Huang B, Young YL. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. Journal of Fluids Engineering, 2013, 135(7): 071301 [44] Refprop N. Reference fluid thermodynamic and transport properties. NIST Reference Database. Version 2013: 9 -