EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气动载荷下防热材料剥离颗粒输运特性的直接数值模拟研究

李婷婷 李青 涂国华 袁先旭 周强

李婷婷, 李青, 涂国华, 袁先旭, 周强. 气动载荷下防热材料剥离颗粒输运特性的直接数值模拟研究. 力学学报, 2022, 54(6): 1523-1532 doi: 10.6052/0459-1879-21-604
引用本文: 李婷婷, 李青, 涂国华, 袁先旭, 周强. 气动载荷下防热材料剥离颗粒输运特性的直接数值模拟研究. 力学学报, 2022, 54(6): 1523-1532 doi: 10.6052/0459-1879-21-604
Li Tingting, Li Qing, Tu Guohua, Yuan Xianxu, Zhou Qiang. Direct numerical simulation of single ablative particle dynamics in near-wall Couette flow under aerodynamic load. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1523-1532 doi: 10.6052/0459-1879-21-604
Citation: Li Tingting, Li Qing, Tu Guohua, Yuan Xianxu, Zhou Qiang. Direct numerical simulation of single ablative particle dynamics in near-wall Couette flow under aerodynamic load. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1523-1532 doi: 10.6052/0459-1879-21-604

气动载荷下防热材料剥离颗粒输运特性的直接数值模拟研究

doi: 10.6052/0459-1879-21-604
基金项目: 国家重点研发计划(2019YFA0405200)和双分散气固两相流中相间作用力的微尺度和介尺度模型研究(21978228)资助项目
详细信息
    作者简介:

    李青, 博士, 主要研究方向: 颗粒湍流. Email: liqing2020@cardc.cn

    周强, 教授, 主要研究方向: 多相流模拟和实验、颗粒流体介尺度结构. Email: zhou.590@mail.xjtu.edu.cn

  • 中图分类号: V411.4, V211.3

DIRECT NUMERICAL SIMULATION OF SINGLE ABLATIVE PARTICLE DYNAMICS IN NEAR-WALL COUETTE FLOW UNDER AERODYNAMIC LOAD

  • 摘要: 高超声速飞行器防热材料在气动载荷下发生机械剥蚀, 进而影响绕流流态、气动性能、热载荷等, 相关颗粒剥离动力学是高超声速热防护系统设计及防热材料体系评价中的共性基础性科学问题. 研究通过近壁流动量纲分析, 将烧蚀颗粒剥离过程模化为单个圆球惯性烧蚀颗粒在Couette流动中的动力学问题, 并采用颗粒解析的直接数值模拟方法开展数值研究, 获得了烧蚀颗粒关键特征参量对颗粒输运动力学的影响规律. 研究发现, 随着颗粒/流体密度比$ {\rho _r} $越大, 颗粒惯性St越大, 则颗粒水平和法向输运速度均减小; 随着颗粒粒径${d_{\text{p}}}$越大, 颗粒惯性St越大, 则颗粒水平输运速度减小, 但是, 法向输运速度和位移均因大颗粒受到更大的Saffman升力而增大. 此外, 烧蚀颗粒法向位移远小于水平位移, 颗粒以水平输运为主. 本研究最终建立了颗粒启动速度归一化表达式, 发现归一化颗粒启动速度是颗粒和流体惯性的函数, 即颗粒水平输运速度等于流体微团或中性浮力颗粒的速度减去惯性修正项. 研究结果为烧蚀颗粒调制边界层作用机理研究提供支撑.

     

  • 图  1  纤维增强防热材料在高温气流作用下的机械剥落示意图

    Figure  1.  Schematic diagram of mechanical spalling of fiber reinforced ablative composite materials under high temperature air flow

    图  2  飞行器头部流动示意简图

    Figure  2.  Flow around the aircraft nose

    图  3  不同压力梯度Falkner-Skan流动速度分布图

    Figure  3.  Velocity profiles of Falkner-Skan flow at different half cone angles

    图  4  长方体计算域及其相关参数示意图

    Figure  4.  Cuboid computing domain and parameters

    图  5  Couette流中单个中性颗粒法向速度随颗粒到壁面位移的变化

    Figure  5.  The normal velocity of a single neutral particle in Couette flow varies with the particle displacement to the wall

    图  6  网格无关性验证算例(ρr = 10000, rp = 0.25, $ OX \times OY \times OZ{\text{ = 5}}{r_{\text{p}}} \times {\text{5}}{r_{\text{p}}} \times 2.{\text{5}}{r_{\text{p}}} $)

    Figure  6.  Grid independent verification(ρr = 10000, rp = 0.25, $ OX \times OY \times OZ{\text{ = 5}}{r_{\text{p}}} \times {\text{5}}{r_{\text{p}}} \times 2.{\text{5}}{r_{\text{p}}} $)

    图  7  不同密度比颗粒输运轨迹 (dp/δ = 1)

    Figure  7.  Particle transport trajectories with different density ratios (dp/δ = 1)

    图  8  不同密度比颗粒水平速度沿流向变化规律 (dp/δ = 1)

    Figure  8.  The horizontal velocity of particles with different density ratios varies along the flow direction (dp/δ = 1)

    图  9  不同密度比颗粒水平滑移速度沿流向变化规律 (dp/δ = 1)

    Figure  9.  The horizontal slip velocity of particles with different density ratios varies along the flow direction (dp/δ = 1)

    图  10  不同密度比颗粒法向速度沿流向变化规律(dp/δ = 1)

    Figure  10.  Normal velocity of particles with different density ratios varies along the flow direction (dp/δ = 1)

    图  11  不同密度比颗粒法向位移随时间变化规律(dp/δ = 1)

    Figure  11.  The normal displacement of particles with different density ratios varies with time (dp/δ = 1)

    图  12  不同直径颗粒水平速度沿流向变化规律($ {\rho _r}{\text{ = }}10\;000 $)

    Figure  12.  The horizontal velocity of particles with different diameters varies along the flow direction ($ {\rho _r}{\text{ = }}10\;000 $)

    图  13  不同直径颗粒水平滑移速度沿流向变化规律(${\rho _r}{\text{ = }}10\;000$)

    Figure  13.  The horizontal slip velocity of particles with different diameters varies along the flow direction ($ {\rho _r}{\text{ = }}10\;000 $)

    图  14  不同直径颗粒法向速度沿流向变化规律($ {\rho _r}{\text{ = }}10\;000 $)

    Figure  14.  The normal velocity of particles with different diameters varies along the flow direction ($ {\rho _r}{\text{ = }}10\;000 $)

    图  15  不同直径颗粒的运动轨迹 ($ {\rho _r}{\text{ = }}10\;000 $)

    Figure  15.  Trajectories of particles of different diameters ($ {\rho _r}{\text{ = }}10\;000 $)

    图  16  含颗粒的Couette流场压力云图

    Figure  16.  Pressure contour of particle influenced flow field

    图  17  不同密度比颗粒的非定常归一化启动速度随颗粒雷诺数变化规律

    Figure  17.  Dimensionless unsteady start-up velocity of particles along the particle Reynolds number for different density ratios

    表  1  激波前后来流参数范围

    Table  1.   Flow parameters beside the shock

    Before shockAfter shock
    density/(g·m−3)$ \rho _1^* $18$ \rho _2^* $O (0.1)
    temperature/K$ T_1^* $226.5$ T_2^* $O (103)
    inflow velocity/(m·s−1)$ U_1^* $6034$ U_2^* $O (103)
    coefficient of kinematic viscosity/(m2·s−1)$ \nu _1^* $8.3 × 10−4$ \nu _2^* $O (10−4)
    下载: 导出CSV

    表  2  数值计算参数设置

    Table  2.   Numerical calculation parameters settings

    Dimensional
    parameters
    (superscript *)
    Reference quantity
    (subscript ∞)
    Dimensionless
    parameters
    Dimensionless values
    validationnumerical experiment
    shear rate ${B^*}$ ${B_\infty }$ $ B = {{{B^*}} \mathord{\left/ {\vphantom {{{B^*}} {{B_\infty }}}} \right. } {{B_\infty }}} $ 0.5 1
    fluid density $ \rho _{\text{f}}^{\text{*}} $ $ \rho _\infty ^{} $ $ \rho _{\text{f}}^{}{\text{ = }}{{\rho _{\text{f}}^{\text{*}}} \mathord{\left/ {\vphantom {{\rho _{\text{f}}^{\text{*}}} {\rho _\infty ^{}}}} \right. } {\rho _\infty ^{}}} $ 1 1
    particle density $ \rho _{\text{p}}^{\text{*}} $ $ \rho _\infty ^{} $ $ \rho _{\text{p}}^{}{\text{ = }}{{\rho _{\text{p}}^{\text{*}}} \mathord{\left/ {\vphantom {{\rho _{\text{p}}^{\text{*}}} {\rho _\infty ^{}}}} \right. } {\rho _\infty ^{}}} $ 1 10000
    20000
    30000
    coefficient of kinematic viscosity $ {\nu ^{\text{*}}} $ $ {\nu _\infty } $ $ \nu {\text{ = }}{{{\nu ^{\text{*}}}} \mathord{\left/ {\vphantom {{{\nu ^{\text{*}}}} {{\nu _\infty }}}} \right. } {{\nu _\infty }}} $ 1 1
    characteristic length $ {\delta ^{\text{*}}} $ $ {\delta _\infty }{\text{ = }}\sqrt {{\nu _\infty }{\text{/}}{B_\infty }} $ $ \delta {\text{ = }}\sqrt {\nu {\text{/}}B} $ $\sqrt 2 $ 1
    characteristic velocity ${U^*}$ ${U_\infty } = \sqrt {{B_\infty }{\nu _\infty }} $ $U = \sqrt {B\nu } $ $\sqrt {0.5} $ 1
    characteristic time ${t^*}$ ${t_\infty } = {{{\delta _\infty }} \mathord{\left/ {\vphantom {{{\delta _\infty }} {{U_\infty }}}} \right. } {{U_\infty }}}$ $t = {\delta \mathord{\left/ {\vphantom {\delta U}} \right. } U}$ 2 1
    particle diameter $d_{_{\text{p}}}^*$ $ {\delta _\infty }{\text{ = }}\sqrt {{\nu _\infty }{\text{/}}{B_\infty }} $ ${{{{d_{\text{p}}} = d_{\text{p}}^*} \mathord{\left/ {\vphantom {{{d_{\text{p}}} = d_{\text{p}}^*} \delta }} \right. } \delta }_\infty }$ 2 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 10, 12, 14
    下载: 导出CSV
  • [1] Zhang S, Li X, Zuo J, et al. Research progress on active thermal protection for hypersonic vehicles. Progress in Aerospace Sciences, 2020, 119: 100646 doi: 10.1016/j.paerosci.2020.100646
    [2] 韩杰才, 张杰, 杜善义. 细编穿刺碳/碳复合材料超高温氧化机理研究. 航空学报, 1996, 17(5): 577-581 (Han Jiecai, Zhang Jie, Du Shanyi. Oxidation behavior of 3 D fine weaver pierced carbon/carbon composites at ultra-high temperatures. Acta Aeronautica Et Ast Ronautica Sinica, 1996, 17(5): 577-581 (in Chinese) doi: 10.3321/j.issn:1000-6893.1996.05.014

    Han Jiecai, Zhang Jie, Du Shanyi. Oxidation Behavior of 3 D fine weaver pierced carbon/carbon composites at ultra-high temperatures. Acta Aeronautica Et Ast Ronautica Sinica, 1996, 17(5): 577-581(in Chinese)) doi: 10.3321/j.issn:1000-6893.1996.05.014
    [3] Barrios-Lobelle A, Davuluri R, Fu R, et al. Surface oxidation of carbon/carbon composites in hypersonic environments. AIAA Scitech 2021 Forum, 2021: 1173
    [4] Wang Z, Wang J, Song H, et al. Laser ablation behavior of C/SiC composites subjected to transverse hypersonic airflow. Corrosion Science, 2021, 183: 109345 doi: 10.1016/j.corsci.2021.109345
    [5] 陈卫, 伍越, 黄祯君等. 基于TDLAS的电弧风洞流场Cu组分监测. 航空学报, 2019, 40(8): 96-103

    Chen Wei, Wu Yue, Huang Zhenjun, et al. Monitoring copper species in flow of arc-heated wind tunnel based on TDLAS. Acta Aeronautica Et Ast Ronautica Sinica, 2019, 40(8): 96-103 (in Chinese))
    [6] Dong Y, Pan B. In-situ 3D shape and recession measurements of ablative materials in an arc-heated wind tunnel by UV stereo-digital image correlation. Optics and Lasers in Engineering, 2019, 116: 75-81 doi: 10.1016/j.optlaseng.2018.10.022
    [7] Li W, Huang H, Tian Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation. International Journal of Heat and Mass Transfer, 2015, 84: 245-252 doi: 10.1016/j.ijheatmasstransfer.2015.01.004
    [8] Mortensen CH, Zhong X. Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone. AIAA Journal, 2016, 54(3): 980-998 doi: 10.2514/1.J054404
    [9] 国义军, 代光月, 桂业伟等. 碳基材料氧化烧蚀的双平台理论和反应控制机理. 空气动力学学报, 2014, 32(6): 755-760 (Guo Yijun, Dai Guangyue, Gui Yewei, et al. A dual platform theory for carbon-based material oxidation with reaction-diffusion rate controlled kinetics. ACTA Aerodynamica Sinica, 2014, 32(6): 755-760 (in Chinese)

    Guo Yijun, Dai Guangyue, Gui Yewei, et al. A dual platform theory for carbon-based material oxidation with reaction-diffusion rate controlled kinetics. A dual platform theory for carbon-based material oxidation with reaction-diffusion rate controlled kinetics. ACTA Aerodynamica Sinica, 2014, 32(6): 755-760(in Chinese))
    [10] Bacik KA, Canizares P, Colm-cille PC, et al. Dynamics of migrating sand dunes interacting with obstacles. Physical Review Fluids, 2021, 6(10): 104308 doi: 10.1103/PhysRevFluids.6.104308
    [11] Alvarez CA, Franklin EM. Force distribution within a barchan dune. Physics of Fluids, 2021, 33(1): 013313 doi: 10.1063/5.0033964
    [12] D’Alessandro G, Hantsis Z, Marchioli C, et al. Accuracy of bed-load transport models in eddy-resolving simulations. International Journal of Multiphase Flow, 2021, 141: 103676 doi: 10.1016/j.ijmultiphaseflow.2021.103676
    [13] Fonias EN, Grigoriadis DGE. Large eddy simulation of particle-laden flow over dunes. European Journal of Mechanics-B/Fluids, 2022, 91: 38-51 doi: 10.1016/j.euromechflu.2021.09.007
    [14] Balachandar S, Eaton JK. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 2010, 42: 111-133 doi: 10.1146/annurev.fluid.010908.165243
    [15] Yu Z, Shao X. A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics, 2007, 227(1): 292-314 doi: 10.1016/j.jcp.2007.07.027
    [16] Cox RG, Brenner H. The slow motion of a sphere through a viscous fluid towards a plane surface—II Small gap widths, including inertial effects. Chemical Engineering Science, 1967, 22(12): 1753-1777 doi: 10.1016/0009-2509(67)80208-2
    [17] 尹健, 张红波, 熊翔. C/C复合材料烧蚀性能的研究进展. 粉末冶金材料科学与工程, 2004, 9(1): 54-59 (Yi Jian, Zhang Hongbo, Xiong Xiang. Research and development of ablative performance of C/C composites. Materials Science and Engineering of Powder Metallurgy, 2004, 9(1): 54-59 (in Chinese) doi: 10.3969/j.issn.1673-0224.2004.01.009

    Yi Jian, Zhang Hongbo, Xiong Xiang. Research and development of ablative performance of C/C composites. Materials Science and Engineering of Powder Metallurgy, 2004, 9(1): 54-59(in Chinese)) doi: 10.3969/j.issn.1673-0224.2004.01.009
    [18] 俞继军, 马志强, 姜贵庆等. C/C复合材料烧蚀形貌测量及烧蚀机理分析. 宇航材料工艺, 2003, 1(1): 36-39 (Yu Jijun, Ma Zhiqiang, Jiang Guiqing, et al. Pattern surface measure and ablation analysis for C/C composite material. Aerospace Materials & Technology, 2003, 1(1): 36-39 (in Chinese) doi: 10.3969/j.issn.1007-2330.2003.01.009

    Yu Jijun, Ma Zhiqiang, Jiang Guiqing, et al. Pattern surface measure and ablation analysis for C/C composite material. Aerospace Materials & Technology, 2003, 1: 36-39(in Chinese)) doi: 10.3969/j.issn.1007-2330.2003.01.009
    [19] Zhang YL, Li HJ, Yao XY, et al. Oxidation protection of C/SiC coated carbon/carbon composites with Si-Mo coating at high temperature. Corrosion Science, 2011, 53(6): 2075-2079 doi: 10.1016/j.corsci.2011.02.024
    [20] Huang HM, Huang Wu LZ, Du SY, et al. Thermochemical ablation of spherical cone during re-entry. Journal of Harbin Institute of Technology, 2001, 18(1): 18-22
    [21] 任金翠. 化学气相沉积HfC纳米线增韧HfC基抗烧蚀涂层研究. [博士论文]. 西安: 西北工业大学, 2018

    Ren Cuiping. HfC nanowire-toughened HfC-based ablation resistance coatings synthesized by chemical vapor deposition. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese))
    [22] 丁杰. 耐高温抗烧蚀无机颗粒改性碳/酚醛复合材料的制备与性能研究. [博士论文]. 武汉: 武汉理工大学, 2016

    Ding Jie. Preparation and performance of heat-resistant and ablation-resist inorganic particles modified carbon/phenolic composites. [PhD Thesis]. Wuhan: Wuhan University of Technology, 2016 (in Chinese))
    [23] Prata KS, Schwartzentruber TE, Minton TK. Air-carbon ablation model for hypersonic flight from molecular-beam data. AIAA Journal, 2022, 60(2): 627-640 doi: 10.2514/1.J060516
    [24] Balaji R, Jeyan JVML, Singh VK. Review on influence of radiating and aerodynamic shock at hypersonic vehicle. Journal of Physics: Conference Series, 2020, 1473(1): 012004 doi: 10.1088/1742-6596/1473/1/012004
    [25] Carmichael R. Properties of the US standard atmosphere 1976//The US Standard Atmosphere, 2014
    [26] 吴望一. 流体力学. 北京: 北京大学出版社, 1983

    Wu Wangyi. Fluid Mechanics. Beijing: Peking University Press, 1983 (in Chinese)
    [27] Mehrabadi M, Horwitz JAK, Subramaniam S, et al. A direct comparison of particle-resolved and point-particle methods in decaying turbulence. Journal of Fluid Mechanics, 2018, 850: 336-369 doi: 10.1017/jfm.2018.442
    [28] Jin G, Wang Y, Zhang J, et al. Turbulent clustering of point particles and finite-size particles in isotropic turbulent flows. Industrial & Engineering Chemistry Research, 2013, 52(33): 11294-11301
    [29] Glowinski R, Pan TW, Periaux J. A fictitious domain method for Dirichlet problem and applications. Computer Methods in Applied Mechanics and Engineering, 1994, 111(3-4): 283-303 doi: 10.1016/0045-7825(94)90135-X
    [30] Yu ZS, Shao XM, Anthony W. A fictitious domain method for particulate flows. Journal of Computational Physics. 2007, 227: 292-314
    [31] Vasseur P, Cox RG. The lateral migration of a spherical particle in two-dimensional shear flows. Journal of Fluid Mechanics, 1976, 78(2): 385-413 doi: 10.1017/S0022112076002498
    [32] Ho BP, Leal LG. Inertial migration of rigid spheres in two dimensional unidirectional flows. Journal of Fluid Mechanics, 1974, 65(2): 365-400
    [33] Wang GQ. Modulation of wall-bounded turbulent flows by large particles: effect of concentration, inertia, and shape. [PhD Thesis]. Institut de Mécanique des Fluides de Toulouse, 2017
    [34] Saffman PG. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 1965, 22: 385-400
    [35] Crowe C, Schwarzkopf J, Sommerfeld M, et al. Multiphase Flows with Droplets and Particles. CRC Press of Taylor & Francis Group, 2011
    [36] Legendre D, Magnaudet J. The lift force on a spherical bubble in a viscous linear shear flow. Journal of Fluid Mechanics, 1998, 368: 81-126 doi: 10.1017/S0022112098001621
    [37] Auton TR, Hunt JCR, Prud'Homme M. The force exerted on a body in inviscid unsteady non-uniform rotational flow. Journal of Fluid Mechanics, 1988, 197: 241-257 doi: 10.1017/S0022112088003246
    [38] Bagchi P, Balachandar S. Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers. Journal of Fluid Mechanics, 2003, 481: 105-148 doi: 10.1017/S002211200300380X
    [39] Magnaudet J, Abbas M. Near-wall forces on a neutrally buoyant spherical particle in an axisymmetric stagnation-point flow. Journal of Fluid Mechanics, 2021, 914: A18 doi: 10.1017/jfm.2020.398
    [40] Magnaudet J. Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. Journal of Fluid Mechanics, 2003, 485: 115-142 doi: 10.1017/S0022112003004464
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  148
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 录用日期:  2022-04-06
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回