DYNAMIC CHARACTERISTICS OF MULTI-VEHICLE-BRIDGE COUPLING SYSTEM BASED ON INTELLIGENT DRIVING ELECTRIC VEHICLE
-
摘要: 迫于能源和环保问题的压力, 电动汽车及智能驾驶受到了各国高度重视. 轮毂电机驱动电动汽车车轮振动剧烈, 与桥梁路面动力学相互作用更加突出, 现有研究主要针对传统汽车, 关于电动车轮与公路桥梁接触动力学相互作用及智能驾驶车队的多车−桥梁耦合作用研究尚不多见. 本文以轮毂电机驱动电动汽车为研究对象, 考虑车轮和桥面多点接触关系, 研究了两个智能驾驶汽车过桥时的车桥耦合动力学特性. 分析了电机质量、电机激励、轮胎悬架刚度非线性、车距、车速对系统振动特性的影响, 以及桥面不平顺激励、三重耦合激励对电动汽车平顺性的影响. 研究表明: 车距和车速是影响车−桥系统振动特性的重要因素, 在车−桥耦合动态设计中, 车距和车速的影响应重点关注; 桥面越平坦, 电机激励及桥面二次激励对车辆平顺性和道路友好性影响越加显著, 当汽车行驶在平坦桥面时两种激励对轮毂电机驱动电动汽车的影响不容忽视. 所建模型有望为智能驾驶电动汽车与桥梁的耦合作用研究提供理论参考.Abstract: Under the pressure of energy and environmental protection, the electric vehicle and intelligent driving have been attached great attention in recent years. The wheel vibration of the electric vehicle driven by hub motors is severe, which has the more interaction with the bridge pavement. Current studies are mainly aimed at traditional vehicles, while there are few works on the dynamic interaction between the electric wheels with highway bridge and the vibration of multi-vehicle-bridge coupling system based on intelligent driving fleets. In this paper, the researches are carried out based on the electric vehicle driven by hub motors. Considering the multi-point contact relationship between the wheel and bridge deck, the vehicle-bridge coupling dynamic characteristics of two intelligent driving electric vehicles driven by hub motors crossing the bridge are studied. The influences of motor mass, motor excitation, tire and suspension stiffness nonlinearity, vehicle distance and vehicle speed on vibration response of the coupling system, as well as the influences of bridge irregularities excitation and triple coupling excitation on ride comfort of the electric vehicle are analyzed. The results show that, the vehicle distance and vehicle speed are important factors which affecting the vibration characteristics of the vehicle-bridge coupling system. In the dynamic design of the vehicle-bridge coupling system, the influence of the vehicle distance and vehicle speed should be pay more attention. The more flat the bridge deck is, the more significant of influence of motor excitation and bridge deck secondary excitation on vehicle ride comfort and road friendliness are. When the vehicle is driving on a flat bridge deck, the influence of the two kinds of excitation on the hub motors electric vehicle should not be ignored. The proposed model in this paper is expected to provide a theoretical reference for the study of coupling vibration of the intelligent driving electric vehicles and bridge.
-
表 1 选取不同阶模态时桥梁跨中挠度均方根值及相邻阶数均方根值差别
Table 1. The root mean square values of mid-span deflection of bridge with different modes and relative differences of adjacent modes
Mode RMSV Difference/% 1 0.0037723 0 2 0.0037723 0 3 0.0037672 0.1352 4 0.0037672 0 5 0.0037645 0.0716 表 2 非线性系数取不同值时桥面二次位移激励均方根值
Table 2. The root mean square values of bridge deck secondary excitation with different nonlinear coefficients
${\beta _1}$ 0 10 20 FV 0.00334639 0.00332113 0.00329550 SV 0.00340481 0.00337996 0.00335843 ${\beta _2}$ 0 50 100 FV 0.00334614 0.00334614 0.00334614 SV 0.00340455 0.00340426 0.00340397 ${\beta _3}$ 0 5 10 FV 0.00334614 0.00334149 0.00333659 SV 0.00340458 0.00339322 0.00338858 表 3 不同电机激励情况下平顺性指标均方根值
Table 3. The root mean square values of ride comfort indexes with different motor excitations
ME Index 1 Index 2 Index 3 Index 4 FV 0.7512637 0.0086458 36.0152089 0.0926743 SV 0.7603110 0.0088057 36.1252287 0.0950474 NME Index 1 Index 2 Index 3 Index 4 FV 0.5656559 0.0086142 0.4664723 0.0797586 SV 0.5780783 0.0087935 0.4595906 0.0820047 NM Index 1 Index 2 Index 3 Index 4 FV 0.5608293 0.0085426 0.4954468 0.0839643 SV 0.5728288 0.0087151 0.4899481 0.0862821 表 4 不同车速情况下平顺性指标均方根值
Table 4. The root mean square values of ride comfort indexes with different vehicle speeds
v = 10 m/s Index 1 Index 2 Index 3 Index 4 FV 0.7512637 0.0086458 36.0152089 0.0926743 SV 0.7603110 0.0088057 36.1252287 0.0950474 v = 20 m/s Index 1 Index 2 Index 3 Index 4 FV 0.8911322 0.0092226 35.9892211 0.1087254 SV 0.9157432 0.0098392 36.0233338 0.1091283 v = 40 m/s Index 1 Index 2 Index 3 Index 4 FV 1.1557695 0.0084153 36.4536057 0.1598099 SV 1.1938592 0.0094305 36.3471981 0.1625517 表 5 不同桥面不平顺情况下平顺性指标均方根值
Table 5. The root mean square values of ride comfort indexes with different bridge irregularities
${B_0}=0.01\;{\text{m} },$
${L_0}=10\;{\text{m} }$Index 1 Index 2 Index 3 Index 4 FV 0.751264 0.008646 36.015209 0.092674 SV 0.760311 0.008806 36.125229 0.095047 ${B_0}=0.01\;{\text{m} },$
${L_0}=5\;{\text{m} }$Index 1 Index 2 Index 3 Index 4 FV 0.903971 0.009573 36.038672 0.139675 SV 0.910145 0.009663 36.149850 0.140616 ${B_0}=0.001\;{\text{m} },$
${L_0}=10\;{\text{m} }$Index 1 Index 2 Index 3 Index 4 FV 0.500517 0.001395 36.009985 0.047929 SV 0.498587 0.001182 36.119231 0.047630 ${B_0}=0.001\;{\text{m} },$
${L_0}=5\;{\text{m} }$Index 1 Index 2 Index 3 Index 4 FV 0.502619 0.001403 36.010475 0.049373 SV 0.503057 0.001408 36.119823 0.049226 表 6 不同车距情况下平顺性指标均方根值
Table 6. The root mean square values of ride comfort indexes with different vehicle distances
l = 5 m Index 1 Index 2 Index 3 Index 4 FV 0.7455626 0.0085276 36.0164544 0.0923293 SV 0.6275483 0.0059638 36.0373885 0.1330738 l = 10 m Index 1 Index 2 Index 3 Index 4 FV 0.7512637 0.0086458 36.0152089 0.0926743 SV 0.7603110 0.0088057 36.1252287 0.0950474 l = 15 m Index 1 Index 2 Index 3 Index 4 FV 0.7418674 0.0084425 36.0156214 0.0921129 SV 0.6097439 0.0054968 36.0894158 0.1358966 表 7 三重激励相较于桥面不平顺单一激励的平顺性指标均方根值对比
Table 7. The comparison of root mean square values of ride comfort indexes between different excitations
RCI EV BI SE ME ${B_0}/{\rm{m} }$ 0.01 0.001 Index 1 FV √ √ −0.66% 34.5% √ √ √ 31.9% 778.9% SV √ √ 1.52% 6.7% √ √ √ 33.5% 775.6% Index 2 FV √ √ −1.04% 35.2% √ √ √ −0.67% 60.2% SV √ √ 1.02% 7.43% √ √ √ 1.16% 35.8% Index 4 FV √ √ 51.1% 72.2% √ √ √ 75.6% 807.8% SV √ √ 55.3% 44.6% √ √ √ 80% 802.2% -
[1] 殷国栋, 金贤建. 分布式驱动电动汽车底盘稳定性控制. 武汉: 华中科技大学出版社, 2021Yin Guodong, Jin Xianjian. Advanced Control of Chassis Stability for Distributed Drive Electric Vehicles. Wuhan: Huazhong University of Science and Technology Press, 2021 (in Chinese)) [2] 李克强, 戴一凡, 李升波等. 智能网联汽车(ICV)技术的发展现状及趋势. 汽车安全与节能学报, 2017, 8(1): 1-14 doi: 10.3969/j.issn.1674-8484.2017.01.001Li Keqiang, Dai Yifan, Li Shengbo et al. State-of-the-art and technical trends of intelligent and connected vehicles. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14(in Chinese)) doi: 10.3969/j.issn.1674-8484.2017.01.001 [3] 郭戈, 许阳光, 徐涛等. 网联共享车路协同智能交通系统综述. 控制与决策, 2019, 34(11): 2375-2389 doi: 10.13195/j.kzyjc.2019.1316Guo Ge, Xu Yangguang, Xu Tao et al. A survey of connected shared vehicle-road cooperative intelligent transportation systems. Control and Decision, 2019, 34(11): 2375-2389(in Chinese)) doi: 10.13195/j.kzyjc.2019.1316 [4] 宗长富, 代昌华, 张东. 智能汽车的人机共驾技术研究现状和发展趋势. 中国公路学报, 2021, 34(6): 214-237 doi: 10.3969/j.issn.1001-7372.2021.06.021Zong Changfu, Dai Changhua, Zhang Dong. Human-machine interaction technology of intelligent vehicles: current development trends and future directions. China Journal of Highway and Transport, 2021, 34(6): 214-237(in Chinese)) doi: 10.3969/j.issn.1001-7372.2021.06.021 [5] 《中国公路学报》编辑部. 中国汽车工程学术研究综述: 2017. 中国公路学报, 2017, 30(6): 1-197Editorial Department of China Journal of Highway and Transport. Review on China’s automotive engineering research progress: 2017. China Journal of Highway and Transport, 2017, 30(6): 1-197 (in Chinese)) [6] 李勇, 徐兴, 孙晓东等. 轮毂电机驱动技术研究概况及发展综述. 电机与控制应用, 2017, 44(6): 1-7 doi: 10.3969/j.issn.1673-6540.2017.06.001Li Yong, Xu Xing, Sun Xiaodong et al. Review and future development of in-wheel motor drive technology. Electric Machines and Control Application, 2017, 44(6): 1-7(in Chinese)) doi: 10.3969/j.issn.1673-6540.2017.06.001 [7] Wang YY, Li YN, Sun W, et al. Effect of the unbalanced vertical force of a switched reluctance motor on the stability and the comfort of an in-wheel motor electric vehicle. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2015, 229(12): 1569-1584 doi: 10.1177/0954407014566438 [8] Zhao LL, Yu YW, Zhou CC, et al. Simulation of vertical characteristics and in-wheel motor vibration of electric vehicles with asymmetric suspension damper under road impact. International Journal of Modelling and Simulation, 2019, 39(1): 14-20 doi: 10.1080/02286203.2018.1468991 [9] Li Z, Zheng L, Ren Y, et al. Multi-objective optimization of active suspension system in electric vehicle with in-wheel-motor against the negative electromechanical coupling effects. Mechanical Systems and Signal Processing, 2018, 116: 545-565 [10] 陈辛波, 杨竟爽, 唐峰. 电机充当动力吸振器的轮边驱动系统研究. 机电一体化, 2014, 20(7): 8-13 doi: 10.3969/j.issn.1007-080x.2014.07.002Chen Xinbo, Yang Jingshuang, Tang Feng. A wheel-drive system using motor as dynamic damper. Mechatronics, 2014, 20(7): 8-13(in Chinese)) doi: 10.3969/j.issn.1007-080x.2014.07.002 [11] Shao X, Naghdy F, Du H, et al. Coupling effect between road excitation and an in-wheel switched reluctance motor on vehicle ride comfort and active suspension control. Journal of Sound and Vibration, 2019, 443: 683-702 doi: 10.1016/j.jsv.2018.12.012 [12] 李哲, 郑玲, 胡一明等. 轮毂驱动电动汽车振动负效应及抑制方法. 重庆大学学报, 2019, 42(2): 20-29Li Zhe, Zheng Ling, Hu Yiming et al. Negative vibration effects of in-wheel motor electric vehicles and the method for suppressing them. Journal of Chongqing University, 2019, 42(2): 20-29(in Chinese)) [13] 冯桂珍, 李韶华, 路永婕. 考虑弹性支撑边界条件的电动汽车-路面系统机电耦合振动特性分析. 中国公路学报, 2020, 33(8): 81-91Feng Guizhen, Li Shaohua, Lu Yongjie. Analysis of Electromechanical coupling vibration characteristics of electric vehicle-road system considering elastically supported boundary conditions. China Journal of Highway and Transport, 2020, 33(8): 81-91(in Chinese)) [14] 冯桂珍, 李韶华, 赵文忠. 电动汽车-路面系统机电耦合建模及非线性振动分析. 振动与冲击, 2021, 40(14): 18-26Feng Guizhen, Li Shaohua, Zhao Wenzhong. Electromechanical coupling modelling and nonlinear vibration analysis of an electric vehicle-road system. Journal of Vibration and Shock, 2021, 40(14): 18-26(in Chinese)) [15] 李韶华, 冯桂珍, 丁虎. 考虑胎路多点接触的电动汽车-路面耦合系统振动分析. 力学学报, 2021, 53(9): 2554-2568 doi: 10.6052/0459-1879-21-239Li Shaohua, Feng Guizhen, Ding Hu. Vibration analysis of electric vehicle-road coupling system considering tire-road multi-point contact. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2554-2568(in Chinese)) doi: 10.6052/0459-1879-21-239 [16] 陈丰, 涂志敏, 陈涛. 基于ITC的自动驾驶卡车编队跟驰安全性评价. 长安大学学报(自然科学版), 2019, 39(5): 97-105Chen Feng, Tu Zhimin, Chen Tao. Evaluation based on ITC of rear-end collision safety of automated truck platoons. Journal of Chang’an University(Natural Science Edition), 2019, 39(5): 97-105(in Chinese)) [17] 邱志军, 杨唐涛, 檀基稳等. 网联环境下高速公路辅助驾驶车辆编队评估. 中国公路学报, 2019, 32(12): 66-75Qiu Zhijun, Yang Tangtao, Tan Jiwen et al. Evaluation of assisted driving platooning on expressway in connected vehicle environment. China Journal of Highway and Transport, 2019, 32(12): 66-75(in Chinese)) [18] 宗芳, 石佩鑫, 王猛等. 考虑前后多车的网联自动驾驶车辆混流跟驰模型. 中国公路学报, 2021, 34(7): 105-117 doi: 10.3969/j.issn.1001-7372.2021.07.009Zong Fang, Shi Peixin, Wang Meng et al. Connected and automated vehicle mixed-traffic car-following model considering states of multiple front and rear vehicles. China Journal of Highway and Transport, 2021, 34(7): 105-117(in Chinese)) doi: 10.3969/j.issn.1001-7372.2021.07.009 [19] 孙秦豫, 付锐, 王畅等. 人机协作系统中车辆轨迹规划与轨迹跟踪控制研究. 中国公路学报, 2021, 34(9): 146-160 doi: 10.3969/j.issn.1001-7372.2021.09.012Sun Qinyu, Fu Rui, Wang Chang et al. Vehicle Trajectory-planning and Trajectory-tracking control in human-autonomous collaboration system. China Journal of Highway and Transport, 2021, 34(9): 146-160(in Chinese)) doi: 10.3969/j.issn.1001-7372.2021.09.012 [20] 李小珍, 辛莉峰, 王铭等. 车-桥耦合振动2019年度研究进展. 土木与环境工程学报(中英文), 2020, 42(5): 126-138Li Xiaozhen, Xin Lifeng, Wang Ming et al. State-of-the-art review of vehicle-bridge interactions in 2019. Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138(in Chinese)) [21] Chen HY, Ding H, Li SH, et al. Convergent term of the Galerkin truncation for dynamic response of sandwich beams on nonlinear foundations. Journal of Sound and Vibration, 2020, 483: 115514 doi: 10.1016/j.jsv.2020.115514 [22] Chen HY, Ding H, Li SH, et al. The scheme to determine the convergence term of the Galerkin method for dynamic analysis of sandwich plates on nonlinear foundations. Acta Mechanica Solida Sinica, 2021, 34(1): 1-11 doi: 10.1007/s10338-020-00208-6 [23] Sheng GG, Wang X. The geometrically nonlinear dynamic responses of simply supported beams under moving loads. Applied Mathematical Modelling, 2017, 48: 183-195 doi: 10.1016/j.apm.2017.03.064 [24] Li SH, Ren JY. Analytical study on dynamic responses of a curved beam subjected to three-directional moving loads. Applied Mathematical Modelling, 2018, 58: 365-387 doi: 10.1016/j.apm.2018.02.006 [25] 赵跃宇, 康厚军, 冯锐等. 曲线梁研究进展. 力学进展, 2006, 36(2): 170-186 doi: 10.3321/j.issn:1000-0992.2006.02.002Zhao Yueyu, Kang Houjun, Feng Rui et al. Advances of research on curved beams. Advances in Mechanics, 2006, 36(2): 170-186(in Chinese)) doi: 10.3321/j.issn:1000-0992.2006.02.002 [26] Ma L, Zhang W, Han WS, et al. Determining the dynamic amplification factor of multi-span continuous box girder bridges in highways using vehicle-bridge interaction analyses. Engineering Structures, 2019, 181: 47-59 doi: 10.1016/j.engstruct.2018.11.059 [27] 邓露, 陈雅仙, 韩万水等. 中小跨径公路混凝土简支梁桥冲击系数研究及建议取值. 中国公路学报, 2020, 33(1): 69-78 doi: 10.3969/j.issn.1001-7372.2020.01.007Deng Lu, Chen Yaxian, Han Wanshui et al. Studying impact factors for short-and medium-span simply supported concrete highway bridges and its suggested values. China Journal of Highway and Transport, 2020, 33(1): 69-78(in Chinese)) doi: 10.3969/j.issn.1001-7372.2020.01.007 [28] Zhang Y, Zhao HS, Lie ST. A nonlinear multi-spring tire model for dynamic analysis of vehicle-bridge interaction system considering separation and road roughness. Journal of Sound and Vibration, 2018, 436: 112-137 doi: 10.1016/j.jsv.2018.08.039 [29] Deng L, Cao R, Wang W, et al. A multi-point tire model for studying bridge-vehicle coupled vibration. International Journal of Structural Stability and Dynamics, 2016, 16(8): 1550047 doi: 10.1142/S0219455415500479 [30] 夏禾, 张楠, 郭薇薇等. 车桥耦合振动工程. 北京: 科学出版社, 2014: 60-64Xia He, Zhang Nan, Guo Weiwei, et al. Coupling Vibration of Train-Bridge System. Beijing: Science Press, 2014: 60-64 (in Chinese)) [31] 刘晶波, 杜修力. 结构动力学第2版. 北京: 机械工业出版社, 2021: 189-192Liu Jingbo, Du Xiuli. Dynamics of Structures. second edition. Beijing: China Machine Press, 2021: 189-192 (in Chinese)) [32] 张义民, 薛玉春, 贺向东等. 基于开关磁阻电机驱动系统的电动汽车振动研究. 汽车工程, 2007, 29(1): 46-49 doi: 10.3321/j.issn:1000-680X.2007.01.010Zhang Yimin, Xue Yuchun, He Xiangdong et al. A research on the vibration of a electric vehicle using switched reluctance motor as drive system. Automotive Engineering, 2007, 29(1): 46-49(in Chinese)) doi: 10.3321/j.issn:1000-680X.2007.01.010 [33] 钟银辉, 李以农, 杨超等. 基于主动悬架控制轮边驱动电动车垂向振动研究. 振动与冲击, 2017, 36(11): 242-247Zhong Yinhui, Li Yinong, Yang Chao et al. Vertical vibration of in-wheel motor electric vehicles based on active suspension control. Journal of Vibration and Shock, 2017, 36(11): 242-247(in Chinese)) -