NONLINEAR STIFFNESS TOPOLOGY OPTIMIZATION FOR THE BEND STIFFENER OF FLEXIBLE RISER
-
摘要: 防弯器是海洋柔性立管过弯保护的关键附件, 对提高立管的结构安全性具有重要意义. 目前, 防弯器结构设计主要采用尺寸优化方法. 然而, 与拓扑优化方法相比, 该方法能提供的设计空间有限, 其在提高防弯器的力学性能, 以及探索防弯器创新构型方面具有很大不足. 本文在Dirichlet边界条件下, 以最大化弯曲刚度为目标, 对同时考虑材料和几何非线性的防弯器结构拓扑优化方法进行研究. 通过引入Helmholtz-PDE过滤和Heaviside惩罚, 以克服优化中出现的棋盘格现象和灰度单元等数值不稳定性问题. 与此同时, 研究引入了对称算子, 以提高往复性载荷作用下防弯器结构的承载能力和可制造性, 并且采用伴随法对优化问题的灵敏度进行了推导. 此外, 为了提高结构分析和优化的效率, 研究还基于PETSc库建立了并行程序框架. 数值算例中, 在材料体分比相同的情况下, 对防弯器结构分别进行了2D和3D非线性拓扑优化, 并对两种优化结果的承载能力进行了对比. 数值算例结果表明, 相比于防弯器2D拓扑优化结果, 在大部分波浪载荷方向下, 3D拓扑优化所给出的防弯器设计方案具有更为优越的结构性能. 本文所建立的3D非线性拓扑优化技术, 为深水恶劣海况下的高性能防弯器结构设计提供了新的理论模型和实现技术.Abstract: The bend stiffener, as the key over-bending protection accessory, is of significant importance to improve the safety of the flexible riser used in deep water. At present, the size optimization method is mainly used in the structural design of the bend stiffener. However, compared with the topology optimization, the design freedom provided by this method is limited, and it lacks capacities in sufficiently improving the mechanical performance and finding the novel configurations of the bend stiffener. In the present study, under Dirichlet boundary conditions, a topology optimization method considering the material and geometric nonlinearity is developed to maximize the structural stiffness of the bend stiffener. The Helmholtz-PDE filter and Heaviside projection are introduced to eliminate the numerical issues caused by the checkerboard pattern and the gray element phenomenon, respectively. The symmetry operator is employed to enhance the load bearing capability under the reciprocating ocean wave load and improve the manufacturability of the bend stiffener. Making use of the adjoint method, a sensitivity analysis is performed to enable a gradient-based algorithm for solving the optimization problems. Simultaneously, a parallel computational framework based on PETSc library is also utilized to improve the efficiency of the structural analysis and optimization. In the numerical examples, with the constant material volume fraction, 2D and 3D optimizations for the bend stiffener are performed to improve the stiffness of the bend stiffener, respectively. Based on that, the load carrying capacity of the two optimization results under different load directions are compared. The numerical examples show that, compared to the 2D optimized result, the 3D optimization can significantly improve the stiffness of the bend stiffener in most loading directions. The present 3D nonlinear topology optimization method provides the new theorical model and implementation technology for the high-performance bend stiffener with the severe water environment in the deep ocean.
-
Key words:
- flexible riser /
- bend stiffener /
- structural nonlinearity /
- topology optimization /
- load direction
-
图 2 切线刚度
${{\boldsymbol{K}}_{\tan }}$ 与割线刚度${{\boldsymbol{K}}_{\cot }}$ 的定义, 其中${\boldsymbol{F}}$ 和${\boldsymbol{u}}$ 分别为结构的载荷和位移Figure 2. The definition of tangent stiffness
${{\boldsymbol{K}}_{\tan }}$ and secant stiffness${{\boldsymbol{K}}_{\cot }}$ , where${\boldsymbol{F}}$ and${\boldsymbol{u}}$ are the force and displacement of a structure, respectively -
[1] 阎军, 英玺蓬, 步宇峰等. 深水柔性立管结构技术进展综述. 海洋工程装备技术, 2019, 6(6): 745-749 (Yan Jun, Ying Xipeng, Bu Yufeng, et al. Summary of development of flexible riser structural technology in deep water. Ocean Engineering Equipment and Technology, 2019, 6(6): 745-749 (in Chinese) [2] Patel MH, Seyed FB. Review of flexible riser modelling and analysis techniques. Engineering Structures, 1995, 17(4): 293-304 doi: 10.1016/0141-0296(95)00027-5 [3] 李兰, 张荫纳. 静态柔性软管弯曲加强器的设计. 海洋工程装备与技术, 2014, 1(3): 223-226 (Li Lan, Zhang Mengna. Design of static bend stiffener for flexible pipes. Ocean Engineering Equipment and Technology, 2014, 1(3): 223-226 (in Chinese) doi: 10.3969/j.issn.2095-7297.2014.03.007 [4] Deruntz JA. End effect bending stresses in cables. Journal of Applied Mechanics, 1969, 36(4): 750-756 doi: 10.1115/1.3564766 [5] Boet WJC, Out JMM. Analysis of a flexible-riser top connection with bend restrictor//Proceedings of the Annual Offshore Technology Conference, Houston, 1990: 131-142 [6] Tong DJ, Low YM, Sheehan JM. Nonlinear bend stiffener analysis using a simple formulation and finite element method. China Ocean Engineering, 2011, 25(4): 577-590 doi: 10.1007/s13344-011-0047-0 [7] Drobyshevski Y. Investigation into non-linear bending of elastic bars with application to design of bend stiffeners. Marine Structures, 2013, 31: 102-130 doi: 10.1016/j.marstruc.2012.10.008 [8] Tanaka RL, da Silveira LMY, Novaes JPZ, et al. Bending stiffener design through structural optimization//Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, American Society of Mechanical Engineers Digital Collection, Hawaii, 2010, 3: 411-418 [9] Yang H, Wang A. Fatigue reliability based design optimization of bending stiffener. Journal of Ship Research, 2012, 56(2): 120-128 doi: 10.5957/jsr.2012.56.2.120 [10] Tang M, Yan J, Chen J, et al. Nonlinear analysis and multi-objective optimization for bend stiffeners of flexible riser. Journal of Marine Science and Technology, 2015, 20: 591-603 [11] Cheng GD, Olhoff N. An investigation concerning optimal design of solid elastic plates. International Journal of Solids and Structures, Pergamon, 1981, 17(3): 305-323 doi: 10.1016/0020-7683(81)90065-2 [12] Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224 doi: 10.1016/0045-7825(88)90086-2 [13] Ye HL, Dai ZJ, Wang WW, et al. ICM method for topology optimization of multimaterial continuum structure with displacement constraint. Acta Mechanica Sinica, 2019, 35(3): 552-562 doi: 10.1007/s10409-018-0827-3 [14] 隋允康, 叶红玲, 彭细荣等. 连续体结构拓扑优化应力约束凝聚化的ICM方法. 力学学报, 2007, 39(4): 554-563 (Sui Yunkang, Ye Hongling, Peng Xirong, et al. The ICM method for contimuum structural topology optimization with condenstation of stress constraints. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 554-563 (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.04.019 [15] Wallin M, Ivarsson N, Tortorelli D. Stiffness optimization of non-linear elastic structures. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 292-307 doi: 10.1016/j.cma.2017.11.004 [16] Kemmler R, Lipka A, Ramm E. Large deformations and stability in topology optimization. Structural and Multidisciplinary Optimization, 2005, 30(6): 459-476 doi: 10.1007/s00158-005-0534-0 [17] Bruns TE, Tortorelli DA. Topology optimization of non-linear elastic structures and compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26-27): 3443-3459 doi: 10.1016/S0045-7825(00)00278-4 [18] Wallin M, Ristinmaa M, Askfelt H. Optimal topologies derived from a phase-field method. Structural and Multidisciplinary Optimization, 2012, 45(2): 171-183 doi: 10.1007/s00158-011-0688-x [19] Buhl T, Pedersen CBW, Sigmund O. Stiffness design of geometrically nonlinear structures using topology optimization. Structural and Multidisciplinary Optimization, 2000, 19(2): 93-104 doi: 10.1007/s001580050089 [20] Niu F, Xu S, Cheng G. A general formulation of structural topology optimization for maximizing structural stiffness. Structural and Multidisciplinary Optimization, 2011, 43(4): 561-572 doi: 10.1007/s00158-010-0585-8 [21] Krenk S. Non-linear Modeling and Analysis of Solids and Structures. Cambridge: Cambridge University Press, 2009 [22] Sigmund O. On the design of compliant mechanisms using topology optimization. Mechanics of Structures and Machines, 1997, 25(4): 493-524 doi: 10.1080/08905459708945415 [23] Sigmund O, Maute K. Sensitivity filtering from a continuum mechanics perspective. Structural and Multidisciplinary Optimization, 2012, 46(4): 471-475 doi: 10.1007/s00158-012-0814-4 [24] Bruns TE. A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Structural and Multidisciplinary Optimization, 2005, 30(6): 428-436 doi: 10.1007/s00158-005-0537-x [25] Abhyankar S, Brown J, Constantinescu EM, et al. PETSc/TS: A modern scalable ODE/DAE solver library. arXiv:1806.01437v1 [26] Aage N, Andreassen E, Lazarov BS. Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework. Structural and Multidisciplinary Optimization, 2015, 51(3): 565-572 doi: 10.1007/s00158-014-1157-0 [27] Lazarov BS, Sigmund O. Filters in topology optimization based on Helmholtz-type differential equations. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781 doi: 10.1002/nme.3072 [28] Duan Z, Yan J, Zhao G. Integrated optimization of the material and structure of composites based on the heaviside penalization of discrete material model. Structural and Multidisciplinary Optimization, 2015, 51(3): 721-732 doi: 10.1007/s00158-014-1168-x [29] Xu S, Cai Y, Cheng G. Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 2010, 41(4): 495-505 doi: 10.1007/s00158-009-0452-7 [30] Wang FW, Sigmund O, Jensen JS. Design of materials with prescribed nonlinear properties. Journal of the Mechanics and Physics of Solids, 2014, 69(1): 156-174 -