EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于涡量矩理论的绕振荡水翼涡动力学分析

郝会云 刘韵晴 魏海鹏 张孟杰 黄彪

郝会云, 刘韵晴, 魏海鹏, 张孟杰, 黄彪. 基于涡量矩理论的绕振荡水翼涡动力学分析. 力学学报, 2022, 54(5): 1199-1208 doi: 10.6052/0459-1879-21-543
引用本文: 郝会云, 刘韵晴, 魏海鹏, 张孟杰, 黄彪. 基于涡量矩理论的绕振荡水翼涡动力学分析. 力学学报, 2022, 54(5): 1199-1208 doi: 10.6052/0459-1879-21-543
Hao Huiyun, Liu Yunqing, Wei Haipeng, Zhang Mengjie, Huang Biao. Vortex dynamics of a pitching hydrofoil based on the vorticity moment theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1199-1208 doi: 10.6052/0459-1879-21-543
Citation: Hao Huiyun, Liu Yunqing, Wei Haipeng, Zhang Mengjie, Huang Biao. Vortex dynamics of a pitching hydrofoil based on the vorticity moment theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1199-1208 doi: 10.6052/0459-1879-21-543

基于涡量矩理论的绕振荡水翼涡动力学分析

doi: 10.6052/0459-1879-21-543
基金项目: 北京市自然科学基金(3212023)和国家自然科学基金(52109111, 11902312)资助项目
详细信息
    作者简介:

    黄彪, 教授, 主要研究方向: 多相流体动力学. E-mail: huangbiao@bit.edu.cn

  • 中图分类号: O357.5

VORTEX DYNAMICS OF A PITCHING HYDROFOIL BASED ON THE VORTICITY MOMENT THEORY

  • 摘要: 文章采用标准k-ω SST湍流模型和动网格技术, 实现了绕俯仰振荡NACA66水翼非定常流动结构与水动力特性的数值模拟, 并基于有限域涡量矩理论定量表征了局部旋涡结构对水翼动力特性的影响. 研究结果表明: 在水翼升程阶段, 当攻角较小时, 层流向湍流的转捩点由水翼尾缘向前缘移动; 在较大攻角时, 顺时针尾缘涡−TEV在水翼吸力面上生成并向前缘发展, 同时与吸力面上的顺时针前缘涡−LEV融合发展为附着在整个吸力面上的新前缘涡−LEV, 新的−LEV与逆时针尾缘涡+TEV相互作用直至完全脱落, 直接导致了水翼的动力失速, 在回程阶段, 绕振荡水翼的流场结构逐渐由湍流转变为层流. 基于有限域涡量矩理论的定量分析发现, 有限域内附着的−LEV和−TEV提供正升力, 当−LEV发展覆盖整个吸力面时对升力的贡献最大, 占总升力近50%, 而+TEV提供负升力. 同时发现, 有限域内各旋涡内部的不同区域提供的升力有正有负; 而逸出有限域的旋涡内部不同区域提供的升力方向均保持一致, 其中顺时针涡提供正升力, 而逆时针涡提供负升力. 在失速阶段, 域外旋涡整体对升力贡献较小且存在小幅波动, 体现了流动的非定常性.

     

  • 图  1  计算域与边界条件设置

    Figure  1.  Computational domain and boundary conditions

    图  2  水翼周围网格划分示意图

    Figure  2.  Computational grids around the hydrofoil

    图  3  绕振荡NACA66水翼有限域示意图

    Figure  3.  Diagram of finite domains around the pitching NACA66 hydrofoil

    图  4  不同有限域升、阻力系数的计算值

    Figure  4.  Predicted lift/drag coefficient in different finite domains

    图  5  升力公式 (5)的分解

    Figure  5.  Decompositon of lift Eq. (5)

    图  6  不同有限域下Lamb矢量积分项的升力计算能力

    Figure  6.  Predictive ability of the Lamb vector integral in different finite domains

    图  7  流场阶段划分

    Figure  7.  Stage division

    图  8  线性增加段典型时刻流场

    Figure  8.  Typical flow fields in linear increasing stage

    图  9  分离点及再附着位置随攻角的变化情况

    Figure  9.  Evolution of separation points and reattachment positions with the angle of attack

    图  10  失速波动段典型时刻流场

    Figure  10.  Typical flow fields in dynamic stall stage

    图  11  线性减小段典型时刻流场

    Figure  11.  Typical flow fields in linear decreasing stage

    图  12  典型时刻局部旋涡结构积分域示意图

    Figure  12.  Diagram of vortices’ domain of integration at a typical moment

    图  13  失速波动段关键旋涡贡献

    Figure  13.  Key vortices’ contributions during the dynamic stall stage

    图  14  旋涡结构与Lamb矢量Y向分量云图

    Figure  14.  Vortices and ly contours

    图  15  一个失速周期内的旋涡升力贡献演化

    Figure  15.  Contributions of vortices during one stall period

    16  尾流旋涡结构与Lamb矢量Y向分量云图

    16.  Wake vortices and ly contours

  • [1] 徐建安, 孔德慧, 高新. 2自由度振荡水翼推进性能分析及实验研究. 机器人, 2017, 39(3): 333-339 (Xu Jian’an, Kong Dehui, Gao Xin. Performance analysis and experimental study on 2-degree-of-freedom oscillating hydrofoil propulsion. Robot, 2017, 39(3): 333-339 (in Chinese)
    [2] Li DY, Wang HJ, Qin YL, et al. Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode. Renewable Energy, 2018, 126: 668-680 doi: 10.1016/j.renene.2018.03.080
    [3] Park S, Park S, Rhee SH. Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine. Renewable Energy, 2016, 92: 321-332 doi: 10.1016/j.renene.2016.02.025
    [4] 乔凯, 王启先, 王勇等. 振荡翼改进运动模型的能量捕获性能分析. 山东大学学报(工学版), 2020, 50(6): 40-47 (Qiao Kai, Wang Qixian, Wang Yong, et al. Energy harvesting performance analysis on improved motion model of oscillating hydrofoil. Journal of Shandong University (Engineering Science), 2020, 50(6): 40-47 (in Chinese)
    [5] 张世军. 振荡翼式潮流能发电装置的水动力分析. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Zhang Shijun. Hydrodynamic analysis of the oscillating hydrofoil in tidal energy extraction devices. [Master's Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [6] 谈松林. 翼形对振荡翼水轮机潮流能获取性能影响数值分析及实验验证. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2018

    Tan Songlin. Numerical and experimental analysis of hydrofoils shape effects on tidal current energy extracting performance for an oscillating-foil hydroturbine. [Master's Thesis]. Harbin: Harbin Engineering University, 2018 (in Chinese)
    [7] 曹树良, 吴玉林, 杨辅政. 混流式水轮机转轮内部三维紊流的数值分析. 水力发电学报, 1997, 4: 53-61 (Cao Shuliang, Wu Yulin, Yang Fuzheng. Numerical simulation of three-dimensional turbulent flow through a Francis turbine runner. Journal of Hydroelectric Engineering, 1997, 4: 53-61 (in Chinese)
    [8] Zhang MJ, Chen H, Wu Q, et al. Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil. Ocean Engineering, 2019, 173: 298-307 doi: 10.1016/j.oceaneng.2018.12.064
    [9] Chitrakar S, Solemslie BW, Neopane HP, et al. Review on numerical techniques applied in impulse hydro turbines. Renewable Energy, 2020, 159: 843-859 doi: 10.1016/j.renene.2020.06.058
    [10] Acharya M, Metwally MH. Unsteady pressure field and vorticity production over a pitching airfoil. AIAA Journal, 1992, 30(2): 403-411 doi: 10.2514/3.10931
    [11] Ellington CP, vanden Berg C, Willmott AP, et al. Leading-edge vortices in insect flight. Nature, 1996, 384(6610): 626-630 doi: 10.1038/384626a0
    [12] Kissing J, Kriegseis J, Li ZY, et al. Insights into leading edge vortex formation and detachment on a pitching and plunging flat plate. Experiments in Fluids, 2020, 61(9): 208 doi: 10.1007/s00348-020-03034-1
    [13] Tseng CC, Hu HA. Flow dynamics of a pitching foil by Eulerian and Lagrangian viewpoints. AIAA Journal, 2016, 54(2): 712-727 doi: 10.2514/1.J053619
    [14] Eljack EM, Soria J. Investigation of the low-frequency oscillations in the flowfield about an airfoil. AIAA Journal, 2020, 58(10): 4271-4286 doi: 10.2514/1.J058905
    [15] 黄彪. 非定常空化流动机理及数值计算模型研究. [博士论文]. 北京: 北京理工大学, 2012

    Huang Biao. Physical and numerical investigation of unsteady cavitating flows. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2018 (in Chinese)
    [16] Zhang MJ, Huang B, Qian ZD, et al. Cavitating flow structures and corresponding hydrodynamics of a transient pitching hydrofoil in different cavitation regimes. International Journal of Multiphase Flow, 2020, 132: 103408 doi: 10.1016/j.ijmultiphaseflow.2020.103408
    [17] Alam M, Muhammad Z. Dynamics of flow around a pitching hydrofoil. Journal of Fluids and Structures, 2020, 99: 103151 doi: 10.1016/j.jfluidstructs.2020.103151
    [18] Xia X, Mohseni K. Lift evaluation of a two-dimensional pitching flat plate. Physics of Fluids, 2013, 25(9): 091901 doi: 10.1063/1.4819878
    [19] Tang Y, Wang FJ, Wang CY, et al. Low-frequency oscillation characteristics of flow for NACA66 hydrofoil under critical stall condition. Renewable Energy, 2021, 172: 983-997 doi: 10.1016/j.renene.2021.03.095
    [20] Liu LQ, Zhu JY, Wu JZ. Lift and drag in two-dimensional steady viscous and compressible flow. Journal of Fluid Mechanics, 2015, 784: 304-341 doi: 10.1017/jfm.2015.584
    [21] Goldstein S. The forces on a solid body moving through viscous fluid. Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character, 1929, 123(791): 216-225
    [22] Liu LQ, Wu JZ, Su WD, et al. Lift and drag in three-dimensional steady viscous and compressible flow. Physics of Fluids, 2017, 29(11): 116105 doi: 10.1063/1.4989747
    [23] von Karman T, Burgers JM. General Aerodynamic Theory——Perfect Fluids, Volume II. Berlin: Springer, 1936
    [24] Wu JZ, Lu XY, Zhuang LX. Integral force acting on a body due to local flow structures. Journal of Fluid Mechanics, 2007, 576: 265-286 doi: 10.1017/S0022112006004551
    [25] 童秉纲, 尹协远, 朱克勤. 涡运动理论. 合肥: 中国科学技术大学出版社, 2009

    Tong Binggang, Yin Xieyuan, Zhu Keqin. Theory of Vortex Dynamics. Hefei: Press of University of Science and Technology of China, 2009 (in Chinese)
    [26] Ericsson LE, Reding JP. Unsteady airfoil stall, review and extension. Journal of Aircraft, 1971, 8(8): 609-616 doi: 10.2514/3.59146
    [27] Wu JZ, Wu JM. Vorticity Dynamics on Boundaries. Advances in Applied Mechanics, 1996, 32: 119-275
    [28] Yang Y. Theory and applications of the vortex-surface field. Chinese Science Bulletin, 2020, 65(6): 483-495 doi: 10.1360/TB-2019-0596
    [29] 孙茂. 昆虫飞行的高升力机理. 力学进展, 2002, 32(3): 425-434 (Sun Mao. Unsteady lift mechanisms in insect flight. Advances in Mechanics, 2002, 32(3): 425-434 (in Chinese) doi: 10.3321/j.issn:1000-0992.2002.03.009
    [30] Marongiu C, Tognaccini R. Far-field analysis of the aerodynamic force by Lamb vector integrals. AIAA Journal, 2010, 48(11): 2543-2555 doi: 10.2514/1.J050326
    [31] Ducoin A. Etude experimentale et numerique du chargement hydrodynamique des corps portants en regime transitoire avec prise en compte du couplage fluide structure. [PhD Thesis]. Institut de Recherche de l’Ecole Navale, Lanvéoc Poulmic, Ecole Centrale de Nantes, France, 2008 (in French)
  • 加载中
图(17)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  27
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2022-03-24
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回