EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动液滴迁移的机理研究

叶致君 段俐 康琦

叶致君, 段俐, 康琦. 激光驱动液滴迁移的机理研究. 力学学报, 2022, 54(2): 316-325 doi: 10.6052/0459-1879-21-522
引用本文: 叶致君, 段俐, 康琦. 激光驱动液滴迁移的机理研究. 力学学报, 2022, 54(2): 316-325 doi: 10.6052/0459-1879-21-522
Ye Zhijun, Duan Li, Kang Qi. Mechanistic study of laser-driven droplet migration. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 316-325 doi: 10.6052/0459-1879-21-522
Citation: Ye Zhijun, Duan Li, Kang Qi. Mechanistic study of laser-driven droplet migration. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 316-325 doi: 10.6052/0459-1879-21-522

激光驱动液滴迁移的机理研究

doi: 10.6052/0459-1879-21-522
基金项目: 国家自然科学基金(12072354, 12032020)和载人航天空间站资助项目
详细信息
    作者简介:

    段俐, 研究员, 主要研究方向: 微重力流体物理. E-mail: duanli@imech.ac.cn

    康琦, 研究员, 主要研究方向: 微重力流体物理. E-mail: kq@imech.ac.cn

  • 中图分类号: O363.2

MECHANISTIC STUDY OF LASER-DRIVEN DROPLET MIGRATION

  • 摘要: 液滴热毛细迁移是微重力流体科学中的典型科学问题, 微重力液滴动力学研究不仅具有流体力学的理论意义, 而且具有重要的实际应用价值. 建立了二维轴对称激光驱动液滴迁移模型, 通过仿真计算研究微重力环境下激光驱动液滴迁移的过程, 研究了液滴直径、母液参数等对液滴迁移速度及行为的影响. 首先研究了母液和液滴对激光系数均较小, 液滴初始位置不同时液滴的迁移行为; 然后研究了母液对激光吸收系数较小, 液滴对激光吸收系数较大时, 不同液滴直径与母液宽度比条件下液滴的迁移行为. 仿真结果表明: 当母液和液滴对激光的吸收系数都很小时, 液滴迁移的方向主要受到液滴初始位置的影响; 当母液对激光的吸收系数较小, 液滴对激光的吸收系数较大时, 液滴会朝激光方向迁移, 液滴初始位置对迁移方向影响较小, 但液滴直径与母液宽度之比会影响液滴迁移行为. 将模拟结果与YGB理论对比, 仿真结果与理论结果趋势一致. 研究激光驱动液滴迁移的物理机制, 探索界面张力作用机理, 得到激光驱动液滴迁移的规律, 探索对液滴的驱动控制方法.

     

  • 图  1  激光驱动液滴迁移原理图

    Figure  1.  Schematic of laser-driven droplet migration

    图  2  激光驱动液滴迁移模型

    Figure  2.  Laser-driven droplet migration model

    图  3  网格划分

    Figure  3.  Mesh division

    图  4  不同时间步长下同一工况液滴界面附近母液流速及液滴速度图

    Figure  4.  Velocity of droplet and mother liquor around droplet interface for the same working condition at different time steps

    图  5  液滴初始位置在母液上部时的流线图

    Figure  5.  Streamline when the initial droplet position droplet is in the upper part of the mother liquor

    图  6  液滴初始位置在母液上部液滴界面附近母液流速及液滴速度图

    Figure  6.  Velocity of droplet and mother liquor around droplet interface when initial droplet position is in the upper part of the mother liquor

    图  7  液滴初始位置在母液上部液滴界面附近压力图

    Figure  7.  Pressure variation around droplet interface when initial droplet position is in the upper part of the mother liquor

    图  8  液滴初始位置在母液正中时的流线图

    Figure  8.  Streamline when the initial droplet position droplet is in the middle of the mother liquor

    图  9  液滴初始位置在母液正中液滴界面附近母液流速图

    Figure  9.  Velocity of droplet and mother liquor around droplet interface when initial droplet position is in the middle of the mother liquor

    图  10  液滴初始位置在母液正中液滴界面附近压力图

    Figure  10.  Pressure variation around droplet interface when initial droplet position is in the middle of the mother liquor

    图  11  液滴初始位置在母液下部时的流线图

    Figure  11.  Streamline when the initial droplet position droplet is in the lower part of the mother liquor

    图  12  液滴初始位置在母液下部液滴界面附近母液 流速及液滴速度图

    Figure  12.  Velocity of droplet and mother liquor around droplet interface when initial droplet position is in the lower part of the mother liquor

    图  13  液滴初始位置在母液下部液滴界面附近压力

    Figure  13.  Pressure variation around droplet interface when initial droplet position is in the lower part of the mother liquor

    图  14  液滴初始位置在母液下部时的流线图

    Figure  14.  Streamline when the initial droplet position droplet is in the lower part of the mother liquor

    图  15  液滴初始位置在母液下部液滴界面附近母液流速及液滴速度图

    Figure  15.  Velocity of droplet and mother liquor around droplet interface when initial droplet position is in the lower part of the mother liquor

    图  16  不同Ar时液滴球心距母液底端距离

    Figure  16.  Distance variation from the center of the droplet sphere to the bottom of the mother liquor with different Ar

    图  17  液滴初始位置在母液下部液滴界面附近母液流速及液滴速度图

    Figure  17.  Velocity of droplet and mother liquor around droplet interface when initial droplet position is in the lower part of the mother liquor

    图  18  不同Ar时液滴球心距母液底端距离

    Figure  18.  Distance variation from the center of the droplet sphere to the bottom of the mother liquor with different Ar

    图  19  液滴初始位置在母液下部液滴界面附近母液流速及液滴速度图

    Figure  19.  Velocity of droplet and mother liquor around droplet interface when initial droplet position is in the lower part of the mother liquor

    表  1  物性参数

    Table  1.   Physical property parameters

    ν/
    (µm2·s−1)
    ρ/
    ( kg·m−3)
    Λ/
    (W·m−1·K−1)
    σT/
    (µN·m−1·K−1)
    mother liquor30.09550.151
    droplet2.89550.410−86.3
    下载: 导出CSV

    表  2  不同直径不同温度梯度液滴迁移仿真计算速度与YGB理论迁移速度及Re, Ma对照表

    Table  2.   Size of droplets, simulation calculation migration velocity, YGB model velocity, Re and Ma

    R/mmГ/(K·mm−1)Vmax/(mm·s−1)VYGB/(mm·s−1)ReMa/103
    2.50 0.03 0.145 2.921 0.002 0.016
    2.50
    1.50
    2.00
    2.25
    2.50
    3.00
    0.12
    13.30
    25.00
    33.33
    20.00
    30.00
    0.162
    4.124
    11.046
    14.900
    13.677
    13.541
    10.629
    34.713
    87.000
    130.370
    87.000
    156.600
    0.009
    0.344
    1.150
    1.939
    1.438
    3.105
    0.057
    2.255
    7.536
    12.704
    9.420
    20.347
    下载: 导出CSV
  • [1] 胡文瑞, 徐硕昌. 微重力流体力学. 北京: 科学出版社, 1999: 1-23

    Hu Wenrui, Xu Shuochang. Microgravity Fluid Mechanics. Beijing: Science Press, 1999: 1-23 (in Chinese)
    [2] Egry I, Herlach D, Ratke L. Properties and solidification of metallic melts under microgravity. International Foundry Research, 2009, 61(4): 30-41
    [3] Perrot F, Guenoun P, Beysens D. Phase Separation of Binary Fluids Near a Critical Point Under Microgravity. Springer, 1988
    [4] Antar BN, Ethridge EC, Maxwell D. Viscosity measurement using drop coalescence in microgravity. Microgravity - Science and Technology, 2003, 14(1): 9-19 doi: 10.1007/BF02873332
    [5] Zhang T, Hu R, Zhang S, et al. Superfast growth dynamics of high-quality silicon nanowires on polymer films via self-selected laser-droplet-heating. Nano Letters, 2021, 21(1): 569-576
    [6] Neilson GF, Weinberg MC. Outer space formation of a laser host glass. Journal of Non-Crystalline Solids, 1977, 23(1): 43-58 doi: 10.1016/0022-3093(77)90036-9
    [7] Dietrich DL, Nayagam V, Hicks MC, et al. Droplet combustion experiments aboard the international space station. Microgravity Science and Technology, 2014, 26(2): 65-76 doi: 10.1007/s12217-014-9372-2
    [8] Wang TG, Anilkumar AV, Lee CP. Oscillations of liquid drops: results from USML-1 experiments in space. Journal of Fluid Mechanics, 1996, 308: 1-14
    [9] Young NO, Goldstein JS, Block MJ. The motion of bubbles in a vertical temperature gradient. Journal of Fluid Mechanics, 1959, 6(3): 350-356 doi: 10.1017/S0022112059000684
    [10] Subramanian RS. Slow migration of a gas bubble in a thermal gradient. Aiche Journal, 2010, 27(4): 646-654
    [11] Subramanian RS. Thermocapillary migration of bubbles and droplets. Advances in Space Research, 1983, 3(5): 145-153 doi: 10.1016/0273-1177(83)90239-9
    [12] Balasubramaniam R, Chai AT. Thermocapillary migration of droplets: An exact solution for small Marangoni numbers. Journal of Colloid and Interface Science, 1987, 119(2): 531-538 doi: 10.1016/0021-9797(87)90300-6
    [13] Barton KD, Subramanian RS. Thermocapillary migration of a liquid drop normal to a plane surface. Journal of Colloid and Interface Science, 1990, 137(1): 170-182 doi: 10.1016/0021-9797(90)90054-R
    [14] Keh HJ, Chen SH. The axisymmetric thermocapillary motion of two fluid droplets. International Journal of Multiphase Flow, 1990, 16(3): 515-527 doi: 10.1016/0301-9322(90)90079-X
    [15] Haj-Hariri H, Shi Q, Borhan A. Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Physics of Fluids, 1997, 9(4): 845-855 doi: 10.1063/1.869182
    [16] Yin Z, Chang L, Hu W, et al. Numerical simulations on thermocapillary migrations of nondeformable droplets with large Marangoni numbers. Physics of Fluids, 2012, 24(9): 092101 doi: 10.1063/1.4752028
    [17] Brady PT, Herrmann M, Lopez JM. Confined thermocapillary motion of a three-dimensional deformable drop. Physics of Fluids, 2011, 23(2): 022101 doi: 10.1063/1.3529442
    [18] Loewenberg M, Davis RH. Near-contact thermocapillary motion of two non-conducting drops. Journal of Fluid Mechanics, 1993, 256: 107-131
    [19] Lavrenteva OM, Nir A. Axisymmetric thermal wake interaction of two drops in a gravity field at low Reynolds and high Peclet numbers. Physics of Fluids, 2003, 15(10): 3006-3014 doi: 10.1063/1.1605098
    [20] Berejnov V, Lavrenteva OM, Nir A. Interaction of two deformable viscous drops under external temperature gradient. Journal of Colloid and Interface Science, 2001, 242(1): 202-213 doi: 10.1006/jcis.2001.7769
    [21] Yin Z, Li Q. Thermocapillary migration and interaction of drops: two non-merging drops in an aligned arrangement. Journal of Fluid Mechanics, 2015, 766: 436-467 doi: 10.1017/jfm.2015.10
    [22] Barton KD, Subramanian RS. The migration of liquid drops in a vertical temperature gradient. Journal of Colloid and Interface Science, 1989, 133(1): 211-222 doi: 10.1016/0021-9797(89)90294-4
    [23] Hähnel M, Delitzsch V, Eckelmann H. The motion of droplets in a vertical temperature gradient. Physics of Fluids A: Fluid Dynamics, 1989, 1(9): 1460-1466 doi: 10.1063/1.857323
    [24] Kang Q, Hu L, Huang C, et al. Experimental investigations on interaction of two drops by thermocapillary-buoyancy migration. International Journal of Heat and Mass Transfer, 2006, 49(15): 2636-2641
    [25] Zhang ST, Duan L, Kang Q. Experimental research on thermocapillary migration of drops by using digital holographic interferometry. Experiments in Fluids, 2016, 57(7): 113 doi: 10.1007/s00348-016-2193-x
    [26] Zhang ST, Duan L, Kang Q. Experimental research on thermocapillary-buoyancy migration. Microgravity-Science and Technology, 2018, 30: 183-193 doi: 10.1007/s12217-017-9578-1
    [27] Vincent M, Delville JP. Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing. Physical Review E, 2012, 85: 026310
    [28] 邓孺孺, 何颖清, 秦雁等. 近红外波段(900 ~ 2500 nm)水吸收系数测量. 遥感学报, 2012(1): 192-206 (Deng Ruru, He Yingqing, Qin Yan, et al. Measuring pure water absorption coefficient in the near-infrared spectrum (900 ~ 2500 nm). Journal of Remote Sensing, 2012(1): 192-206 (in Chinese)
    [29] 邓孺孺, 何颖清, 秦雁等. 分离悬浮质影响的光学波段(400 ~ 900 nm) 水吸收系数测量. 遥感学报, 2012(1): 174-191 (Deng Ruru, He Yingqing, Qin Yan, et al. Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm. Journal of Remote Sensing, 2012(1): 174-191 (in Chinese)
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  185
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2021-12-17
  • 网络出版日期:  2021-12-18
  • 刊出日期:  2022-02-17

目录

    /

    返回文章
    返回