EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行Ma12条件超燃发动机流场及燃烧特征分析

何粲 邢建文 欧阳浩 邓维鑫 肖保国

何粲, 邢建文, 欧阳浩, 邓维鑫, 肖保国. 飞行Ma12条件超燃发动机流场及燃烧特征分析. 力学学报, 2022, 54(3): 622-632 doi: 10.6052/0459-1879-21-496
引用本文: 何粲, 邢建文, 欧阳浩, 邓维鑫, 肖保国. 飞行Ma12条件超燃发动机流场及燃烧特征分析. 力学学报, 2022, 54(3): 622-632 doi: 10.6052/0459-1879-21-496
He Can, Xing Jianwen, Ouyang Hao, Deng Weixin, Xiao Baoguo. Flow field and combustion characteristics analysis of sramjet under Ma12 flight condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632 doi: 10.6052/0459-1879-21-496
Citation: He Can, Xing Jianwen, Ouyang Hao, Deng Weixin, Xiao Baoguo. Flow field and combustion characteristics analysis of sramjet under Ma12 flight condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632 doi: 10.6052/0459-1879-21-496

飞行Ma12条件超燃发动机流场及燃烧特征分析

doi: 10.6052/0459-1879-21-496
详细信息
    作者简介:

    邢建文, 副研究员, 主要研究方向: 吸气式高超声速推进技术. E-mail: xingjwml@163.com

FLOW FIELD AND COMBUSTION CHARACTERISTICS ANALYSIS OF SRAMJET UNDER Ma12 FLIGHT CONDITION

  • 摘要: 为提升针对高马赫数发动机的模拟能力, 对计算方法进行了可压缩性修正, 并针对飞行Ma12条件下超燃冲压发动机进行了多状态三维数值模拟, 分析了发动机内波系、参数以及燃烧性能特征. 研究结果表明: (1)修正后的方法计算所得激波位置及强度与试验值吻合, 在激波串模拟、高马赫数发动机模拟上均展现了更优的能力. (2)发动机内形成激波与反射波系, 燃烧并未改变波系贯穿流道的基本结构, 且随着当量比增加, 激波角增大, 反射激波数量增多, 激波交汇带来的温升与压升有利于燃烧释热, 且随着反射激波沿流向减弱, 激波导致的壁面热流升高现象逐渐减弱. (3)流场中绝大部分区域为非预混燃烧. 燃烧室后段平均静温超过2500 K, 完全产物H2O减少, H2与O2燃烧效果变差, 发动机可利用的有效释热在燃烧室前段增加, 在后段减少. O原子复合主要发生在喷管中. (4)当量比0.5时, 化学反应主要发生在燃烧室前部; 当量比1.0时, 反应距离更长. 当量比0.5与1.0下燃烧室阻力差异较小, 总推力系数提升主要由尾喷管贡献. 燃烧会导致燃烧室摩阻及整机总摩阻减小, 进气道与尾喷管摩阻变化较小.

     

  • 图  1  隔离段网格

    Figure  1.  The grid of the isolator

    图  2  采用经过可压缩修正的湍流模型与原始模型计算所得压力与试验对比

    Figure  2.  Comparison of simulations to experimental pressures with compressible modified turbulence model and initial model

    图  3  M12-02发动机构型[23]

    Figure  3.  Configuration of M12-02 scramjet model[23]

    图  4  M12-02喷射模块结构[23]

    Figure  4.  Injector structure of M12-02 scramjet[23]

    图  5  M12-02模型计算网格

    Figure  5.  The mesh topology of M12-02 model

    图  6  密度残差收敛曲线

    Figure  6.  Convergence curve of density residual

    图  7  采用经过可压缩修正的湍流模型与原始模型计算所得压力与试验对比

    Figure  7.  Comparison of simulations to experimental pressures with compressible modified turbulence model and initial model

    图  8  采用经过可压缩修正的湍流模型与原始模型计算所得压力云图对比

    Figure  8.  Comparison of numerical pressure with compressible modified turbulence model to initial model

    图  9  不同状态下对称面马赫数及波系云图

    Figure  9.  Centerline planes of Mach number and shock systems for different cases

    图  10  不同状态下一维质量平均马赫数/静温/静压

    Figure  10.  1D mass averaged Mach number and static pressure and temperature for different cases

    图  11  不同状态下OH/H2O/O/H一维质量平均质量分数

    Figure  11.  1D mass averaged mass fraction of OH/H2O/O/H for different cases

    图  12  不同状态下流场中静温、OH及H2O分布

    Figure  12.  Distribution of static temperature, OH and H2O in flow field for different cases

    图  13  不同状态下流场中火焰指数分布

    Figure  13.  Flame index distribution in flow field for different cases

    图  14  不同状态下燃烧有效释热量及释热变化率分布

    Figure  14.  Distribution of effective heat release and heat rate for different cases

    图  15  不同状态下燃烧效率分布

    Figure  15.  Distribution of combustion efficiency for different cases

    图  16  当量比1.0状态下无量纲壁面热流分布

    Figure  16.  Nondimensional wall heat flux distribution for equivalence ratio 1.0 case

    表  1  M12-02发动机不同部件推力系数及摩阻系数

    Table  1.   Thrust and friction coefficients of different components for M12-02 scramjet

    InletCombustor
    (parallel section)
    NozzleThrust coefficients
    $ {C_F} $$ {C_{FD}} $$ {C_F} $$ {C_{FD}} $$ {C_F} $$ {C_{FD}} $$ {C_F} $$ {C_{FD}} $
    unfueled cold −0.11202 0.04010 −0.25623 0.23140 0.066597 0.02974 −0.30165 0.30124
    equivalence ratio 0.5 −0.11202 0.04010 −0.22547 0.20248 0.138024 0.02932 −0.19946 0.27190
    equivalence ratio 1.0 −0.11202 0.04009 −0.22062 0.19876 0.162270 0.02989 −0.17037 0.26874
    下载: 导出CSV
  • [1] 欧阳浩, 邓维鑫, 邢建文等. 飞行Ma 8条件氢燃料与碳氢燃料燃烧特性试验研究//第十九届全国激波与激波管学术会议论文, 2020: 550-558

    Ouyang Hao, Deng Weixin, Xing Jianwen, et al. Experimental study on combustion characteristics of hydrogen and hydrocarbon in flight Mach 8 condition//Proceedings of the 19th Chinese National Symposium on Shock Waves, 2020: 550-558 (in Chinese)
    [2] Tsien HS. Similarity laws of hypersonic flows. J. Math. Phys., 1946, 25: 247-251 doi: 10.1002/sapm1946251247
    [3] Hueter U, McClinton C. NASA’s advanced space transportation hypersonic program. AIAA-2002-5175
    [4] X-43 A mishap investigation board. Report of Findings: X-43 A Mishap, Vol. I, NASA Washington, DC, May, 2003
    [5] Barth JE, Wise DJ, Wheatley V, et al. Tailored fuel injection for performance enhancement in a Mach 12 scramjet engine. Journal of Propulsion and Power, 2019, 3(1): 72-86
    [6] Landsberg WO, Vanyai T, Mclntyre TJ, et al. Experimental scramjet combustion modes of hydrocarbon mixtures at Mach 8 flight conditions. AIAA Journal, 2020, 58(12): 5117-5122 doi: 10.2514/1.J059856
    [7] Landsberg WO, Wheatley V, Smart MK, et al. Performance of high Mach number scramjets-tunnel vs. flight. Acta Astronautica, 2018, 146: 103-110
    [8] Takahashi M, Sunami T, Tanno H, et al. Performance characteristics of a scramjet engine at Mach 10 to 15 flight condition. AIAA 2005-3350
    [9] Takahashi M, Sunami T, Tanno H, et al. Experimental study on scramjet engine performance at Mach 10 to 15 flight condition. ISABE-2005-1238, 2005
    [10] Takahashi M, Komuro T, Sato K, et al. Performance characteristics of a scramjet engine at high speed condition over Mach 10//Proc. of the 25th ISSW, 2005
    [11] Takahashi M, Kodera M, Itoh K, et al. Numerical simulation on hypervelocity scramjet characteristics//Proc. of the H17 JSSW, Japanese, 2006
    [12] 姚轩宁, 王春, 喻江等. JF12激波风洞高Mach数超燃冲压发动机实验研究. 气体物理, 2019, 4(5): 25-31

    Yao Xuanyu, Wang Chun, Yu Jiang, et al. High-Mach-number scramjet engine tests in JF12 shock tunnel. Physics of Gases, 2019, 4(5): 25-31 (in Chinese)
    [13] 卢洪波, 陈星, 谌君谋等. 新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验. 气体物理, 2019, 4(5): 13-24 (Lu Hongbo, Chen Xing, Chen Junmou, et al. Flight condition achievement of Mach number 8 in a new shock tunnel of CAAA and its scramjet experimental investigation. Physics of Gases, 2019, 4(5): 13-24 (in Chinese)
    [14] 周建兴, 汪颖. 高马赫数超燃冲压发动机性能数值研究. 推进技术, 2014, 35(4): 433-441 (Zhou Jianxing, Wang Ying. Numerical investigation on performance of a high Mach number scramjet. Journal of Propulsion Technology, 2014, 35(4): 433-441 (in Chinese)
    [15] Zhang SK, Li J, Qin F, et al. Numerical investigation of combustion field of hypervelocity scramjet engine. Acta Astronautica, 2016, 129: 357-366
    [16] 张时空, 李江, 黄志伟等. 高马赫数来流超燃冲压发动机燃烧流场分析. 宇航学报, 2017, 38(1): 80-88 (Zhang Shikong, Li Jiang, Huang Zhiwei, et al. Combustion flow field analysis of a scramjet engine at high mach number. Journal of Astronautics, 2017, 38(1): 80-88 (in Chinese)
    [17] 邢建文, 韩亦宇. 超燃冲压发动机中的热力学非平衡效应//第五届冲压发动机内外流耦合流动研讨会, 山东威海, 2021: 216-230

    Xing Jianwen, Han Yiyu. Thermal nonequilibrium effects in Scramjet//The 5th Symposium on Internal and External Flow Coupling of Ramjet, 2021: 218-230 (in Chinese)
    [18] 邓维鑫, 邢建文, 欧阳浩等. 高马赫数超燃冲压发动机试验研究//第十二届全国高超声速科技学术会议, 四川绵阳, 2019: 374-385

    Deng Weixin, Xing Jianwen, Ouyang Hao, et al. Experimental research of scramjet working at high Mach numbers//The 12th National Hypersonic Science and Technology Academic Conference, 2019: 374-385 (in Chinese)
    [19] 张晓源, 李进平, 张仕忠等. 10马赫冲压发动机爆轰驱动直连式试验方法//第十二届全国高超声速科技学术会议, 四川绵阳, 2019: 282-286

    Zhang Xiaoyuan, Li Jinping, Zhang Shizhong, et al. 10-Mach scramjet direct-connect experiments in detonation-driven shock tunnel//The 12th National Hypersonic Science and Technology Academic Conference, 2019: 282-286 (in Chinese)
    [20] 欧阳浩, 邓维鑫, 邢建文等. 飞行Ma10条件燃烧特性试验研究//第十九届全国激波与激波管学术会议, 福建厦门, 2020: 411-418

    Ouyang Hao, Deng Weixin, Xing Jianwen, et al. Combustion character experiment investigation with flight Ma 10 condition//Proceedings of the 19th Chinese National Symposium on Shock Waves, 2020: 411-418 (in Chinese)
    [21] 孔小平, 吴里银, 黄成扬等. 激波风洞Ma10 自由射流冲压发动机试验模拟能力研究//第五届冲压发动机内外流耦合流动研讨会, 山东威海, 2021: 698-703

    Kong Xiaoping, Wu Liyin, Huang Chengyang, et al. The simulation capability of shock tunnel Mach 10 free jet hypersonic combustion ground test//The 5th Symposium on Internal and External Flow Coupling of Ramjet, 2021: 698-703 (in Chinese)
    [22] 吴里银, 孔小平, 李贤等. 马赫数10超燃发动机激波风洞实验研究//第十二届全国高超声速科技学术会议, 四川绵阳, 2019: 386-392

    Wu Liyin, Kong Xiaoping, Li Xian, et al. Experimental study on a scramjet at Mach 10 in shock tunnel//The 12th National Hypersonic Science and Technology Academic Conference, 2019: 386-392 (in Chinese)
    [23] Kodera M, Yang V, Takahashi M, et al. Ignition transient phenomena in a scramjet engine at Mach 12 flight condition. AIAA 2007-5407
    [24] 赵慧勇. 超燃冲压整体发动机并行数值研究. [博士论文]. 绵阳: 中国空气动力研究与发展中心, 2005

    Zhao Huiyong. Parallel numerical study of whole scramjet engine. [PhD Thesis]. Mianyang: China Aerodynamics Research and Development Center, 2005 (in Chinese)
    [25] 何粲. 双模态超燃冲压发动机隔离段流动特性研究. [硕士论文]. 中国空气动力研究与发展中心, 2015

    He Can. Investigation of flow characteristics in the dual-mode scramjet isolator. [Master Thesis]. Mianyang: China Aerodynamics Research and Development Center, 2015 (in Chinese)
    [26] He C, Xing JW, Xiao BG, et al. Investigation on flow field characteristics of an ethylene fueled scramjet in different combustion modes. AIAA 2017-2303
    [27] Wilcox DC. Formulation of the k-ω turbulence model revisited. AIAA Journal, 2008, 46(11): 2823-2838 doi: 10.2514/1.36541
    [28] Waltrup PJ, Billig FS. Structure of shock waves in cylindrical ducts. AIAA Journal, 1973, 11(10): 1404-1408 doi: 10.2514/3.50600
    [29] Cabell KF, Rock KE. A finite rate chemical analysis of nitric oxide flow contamination effects on scramjet performance. NASA/TP-2003-212159
    [30] Yamashita H, Shimada M, Takeno T. A numerical study on flame stability at the transition point of jet diffusion flames//Twenty-Sixth Symposium (International) on Combustion, 1996: 27-34
    [31] Kutschenreuter P. Scramjet propulsion: supersonic flow combustors. American Institute of Aeronautics and Astronautics, Inc., 2000, https://doi.org/10.2514/5.9781600866609.0513.0568
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  56
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2021-11-28
  • 网络出版日期:  2021-11-29
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回