EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高焓湍流边界层壁面摩阻产生机制分析

刘朋欣 孙东 李辰 郭启龙 袁先旭

刘朋欣, 孙东, 李辰, 郭启龙, 袁先旭. 高焓湍流边界层壁面摩阻产生机制分析. 力学学报, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-490
引用本文: 刘朋欣, 孙东, 李辰, 郭启龙, 袁先旭. 高焓湍流边界层壁面摩阻产生机制分析. 力学学报, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-490
Liu Pengxin, Sun Dong, Li Chen, Guo Qilong, Yuan Xianxu. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-490
Citation: Liu Pengxin, Sun Dong, Li Chen, Guo Qilong, Yuan Xianxu. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-490

高焓湍流边界层壁面摩阻产生机制分析

doi: 10.6052/0459-1879-21-490
基金项目: 国家重点研发计划 (2019 YFA0405201); 国家自然科学基金(11902345); 国家数值风洞工程资助
详细信息
    作者简介:

    刘朋欣, 助理研究员, 主要研究方向: 高温湍流, 爆震燃烧. E-mail:liupengxin@cardc.cn

    袁先旭, 研究员, 主要研究方向: 空气动力学. E-mail: yuanxianxu@skla.cardc.cn

  • 中图分类号: V211.3

ANALYSES ON GENERATION MECHANISM OF SKIN FRICTION IN HIGH ENTHALPY TURBULENT BOUNDARY LAYER

  • 摘要: 高超飞行器在中低空以极高马赫数飞行时, 飞行器表面会遇到湍流与高温非平衡效应耦合作用的新问题. 这种高焓湍流边界层壁面摩阻产生机制是新型高超声速飞行器所关注的基础科学问题, 厘清此产生机制可以为减阻方法的设计提供指导, 具有重要的工程实用价值. 本文选取高超声速飞行时楔形体头部斜激波后的高焓流动状态, 开展了考虑高温非平衡效应的湍流边界层直接数值模拟研究, 并设置同等边界层参数下的低焓完全气体湍流边界层流动作为对比, 采用RD分解技术研究了高焓湍流边界层摩阻的主要产生机制, 对摩阻产生的主要贡献项积分函数分布进行了详细分析, 研究了高温非平衡效应对摩阻产生的影响规律; 采用象限分析技术, 研究了摩阻分解湍动能生成项的主导流动事件. 计算结果表明, 高温非平衡效应会使得壁面摩阻脉动条带的流向和展向尺寸均减小. 分子粘性耗散项和湍动能生成项是高焓湍流边界层摩阻生成的主要流动过程. 分子粘性耗散项主要作用在近壁区, 高焓流动的分布与低焓流动存在差异. 象限分析表明, 上抛和下扫运动是影响摩阻分解中湍动能生成项的主导事件.

     

  • 图  1  计算模型状态示意图

    Figure  1.  Schematic of computational model

    图  2  瞬时流场结构图

    Figure  2.  Instantaneous flow structures

    图  3  Van Driest 变换后的速度分布

    Figure  3.  Profile of Van Driest transformed velocity

    图  4  雷诺应力分布

    Figure  4.  Reynolds Stress distribution

    图  5  瞬时壁面摩阻系数分布

    Figure  5.  Instantaneous distribution of skin friction coefficients

    图  6  摩阻脉动PDF分布

    Figure  6.  PDF profile of skin friction fluctuations

    图  7  壁面摩阻脉动两点相关系数空间分布

    Figure  7.  Maps of two-point correlation coefficient $ R_{C_f'C_f'}^{XZ} $on the wall

    图  8  粘性耗散项预乘积分函数

    Figure  8.  Pre-multiplied integrand of viscous dissipation terms

    图  9  $ {C_{f,V,m}} $积分函数分解及温度分布

    Figure  9.  Integrand parts of $ {C_{f,V,m}} $and the temperature distribution

    图  10  湍动能生成项预乘积分函数

    Figure  10.  Pre-multiplied integrand of TKE production terms

    图  11  Q1-Q4事件发生概率

    Figure  11.  Probability distribution of Q1-Q4 events

    图  12  Q1-Q4事件对湍动能生成项的贡献

    Figure  12.  Contributions of Q1-Q4 events to TKE production terms

    图  13  Q1-Q4湍流生成项预乘积分函数

    Figure  13.  Pre-multiplied integrand of TKE production terms produced by Q1-Q4

    表  1  来流状态及壁温设置

    Table  1.   Inflow condition and wall temperature

    CaseMeρe(kg/m3)Te(K)Tw(K)Tw/ Taw
    TH4.50.1025340034000.206
    TL4.50.10253003000.215
    注: 恢复温度${T_{aw} } = {T_e}\left[ {1 + 0.9 \times \dfrac{ {\left( {\gamma - 1} \right)} }{2}M_e^2} \right]$
    下载: 导出CSV

    表  2  边界层厚度、雷诺数和网格尺度

    Table  2.   Thickness, Reynold number and grid resolution

    CaseReθReτReδ2θ/mmδ/mm∆x + ∆y2 + ∆z +
    TH2451.1802.52396.80.4524.79318.60.345.6
    TL2483.7868.32483.70.4584.97519.30.355.8
    注: θ为动量厚度, 各雷诺数的定义为: $ {{Re} _\theta } = {{{\rho _\delta }{u_\delta }\theta } \mathord{\left/ {\vphantom {{{\rho _\delta }{u_\delta }\theta } {{\mu _\delta }}}} \right. } {{\mu _\delta }}} $, $ {{Re} _\tau } = {{{\rho _w}{u_\tau }\delta } \mathord{\left/ {\vphantom {{{\rho _w}{u_\tau }\delta } {{\mu _w}}}} \right. } {{\mu _w}}} $, $ {{Re} _{\delta 2}} = {{{\rho _\delta }{u_\delta }\theta } \mathord{\left/ {\vphantom {{{\rho _\delta }{u_\delta }\theta } {{\mu _w}}}} \right. } {{\mu _w}}} $.
    下载: 导出CSV

    表  3  摩阻分解公式相对误差

    Table  3.   Relative error of decomposition formula

    CaseCf,decompCf,avgerror
    TH2.19 E-32.16 E-31.4%
    TL1.99 E-32.01 E-3-0.98%
    下载: 导出CSV

    表  4  摩阻分解公式中各项贡献

    Table  4.   Contributions of different terms to skin friction

    TermTHTL
    Cf,V/ Cf,decomp0.3970.415
    Cf,T / Cf,decomp0.4640.482
    Cf,G1 / Cf,decomp0.1420.097
    Cf,G2/ Cf,decomp-3.3 E-5-5.7 E-5
    Cf,G3 / Cf,decomp-0.0030.006
    Cf,V,m/ Cf,decomp0.3940.410
    Cf,V,f/ Cf,decomp0.0030.006
    下载: 导出CSV

    表  5  Q1-Q4湍流生成项对壁面摩阻的贡献

    Table  5.   Contributions of TKE production terms produced by Q1-Q4 to the time-averaged value

    $\dfrac{ { {C_{f,T} } } }{ { {C_{f,decomp} } } }$$\dfrac{ { {C_{f,T,Q1} } } }{ { {C_{f,decomp} } } }$$\dfrac{ { {C_{f,T,Q2} } } }{ { {C_{f,decomp} } } }$$\dfrac{ { {C_{f,T,Q3} } } }{ { {C_{f,decomp} } } }$$\dfrac{ { {C_{f,T,Q4} } } }{ { {C_{f,decomp} } } }$
    TH0.464−0.0060.326−0.0070.271
    TL0.482−0.0060.330−0.0070.285
    下载: 导出CSV
  • [1] Candler GV. Rate effects in hypersonic flows. Annual Review of Fluid Mechanics, 2019, 51: 379-402 doi: 10.1146/annurev-fluid-010518-040258
    [2] Wright R, Zoby E. Flight boundary layer transition measurements on a slender cone at Mach 20. AIAA paper, 1977-719
    [3] Duan L, Martin MP. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. Journal of Fluid Mechanics, 2011, 684: 25-59
    [4] Duan L, Martin MP. Assessment of turbulence–chemistry interaction in hypersonic turbulent boundary layers. AIAA Journal, 2011, 49(1): 172-184 doi: 10.2514/1.J050605
    [5] KIM P. Non-equilibrium effects on hypersonic turbulent boundary layers [PhD Thesis]. Los Angeles: University of California, 2016
    [6] 刘朋欣, 袁先旭, 孙东等. 高温化学非平衡湍流边界层直接数值模拟. 航空学报, 2020,doi: 10.7527/S1000-6893.24877

    Liu PX, Yuan XX, Sun D, et al. DNS of high-temperature turbulent boundary layer with chemical nonequilibrium. Acta Aeronautica et Astronautica Sinica, 2020,doi: 10.7527/S1000-6893.24877 (in Chinese)
    [7] 刘朋欣, 李辰, 孙东等. 高温化学非平衡湍流边界层统计特性分析. 空气动力学报, 2021,doi: 10.7638/kqdlxxb-2020.0178

    Liu PX, Li C, Sun D, et al. Statistical properties of high-temperature turbulent boundary layer including chemical nonequilibrium. Acta Aerodynamica Sinica, 2021,doi: 10.7638/kqdlxxb-2020.0178 (in Chinese)
    [8] 吴正园, 莫凡, 高振勋等. 湍流边界层与高温气体效应耦合的直接数值模拟. 空气动力学报, 2020, 38(6): 1111-1119 (Wu ZY, Mo F, Gao ZX, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow. Acta Aerodynamica Sinica, 2020, 38(6): 1111-1119 (in Chinese)
    [9] Renzo MD, Urzay J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies. Journal of Fluid Mechanics, 2021, 912: A29 doi: 10.1017/jfm.2020.1144
    [10] Urazay J, Renzo MD. Engineering aspects of hypersonic turbulent flows at suborbital enthalpies. In Annual Research Briefs, Center for Turbulence Research, 2021: 7-32. Stanford University
    [11] Passiatore D, Sciacovelli L, Cinnella P, et al. Finite-rate chemistry effects in turbulent hypersonic boundary layers: a direct numerical simulation study. Physical Review Fluids, 2021, 6: 054604 doi: 10.1103/PhysRevFluids.6.054604
    [12] Volpiani PS. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium. Shock Waves, 2021, 31: 361-378 doi: 10.1007/s00193-021-01018-6
    [13] Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Physics of Fluids, 2002, 14(11): 73-76 doi: 10.1063/1.1516779
    [14] Renard N, Deck S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. Journal of Fluid Mechanics, 2016, 790: 339-367 doi: 10.1017/jfm.2016.12
    [15] Mehdi F, White CM. Integral form of the skin friction coefficient suitable for experimental data. Experiments in Fluids, 2011, 50(1): 43-51 doi: 10.1007/s00348-010-0893-1
    [16] Mehdi F, Johansson TG, White C M, et al. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Experiments in Fluids, 2014, 50(1): 1656
    [17] Modesti D, Priozzoli S, Orlandi P, et al. On the role of secondary motions in turbulent square duct flow. Journal of Fluid Mechanics, 2018, 847: 11-111
    [18] Yoon M, Ahn J, Hwang J, Sung HJ. Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows. Physics of Fluids, 2016, 28(8): 081702 doi: 10.1063/1.4961331
    [19] Hwang J, Sung HJ. Influence of large-scale motions on the frictional drag in a turbulent boundary layer. Journal of Fluid Mechanics, 2017, 829: 751-779 doi: 10.1017/jfm.2017.579
    [20] Kim JS, Hwang J, Yoon M, et al. Influence of a large-eddy breakup device on the frictional drag in a turbulent boundary layer. Physics of Fluids, 2017, 29(6): 065103 doi: 10.1063/1.4984602
    [21] Li WP, Fan YT, Modesti D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows. Journal of Fluid Mechanics, 2019, 875: 101-123 doi: 10.1017/jfm.2019.499
    [22] Fan Y T, Li WP, Priozzoli S. Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers. Physics of Fluids, 2019, 31: 086105 doi: 10.1063/1.5111009
    [23] Li Q, Liu PX, Zhang HX. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation. Computers and Fluids, 2018, 170: 261-272 doi: 10.1016/j.compfluid.2018.05.005
    [24] Sun D, Guo QL, Li C, et al. Assessment of optimized symmetric fourth-order weighted essentially non-oscillatory scheme in direct numerical simulation of compressible turbulence. Computers and Fluids, 2020, 197: 104383 doi: 10.1016/j.compfluid.2019.104383
    [25] Sun D, Guo QL, YUNA XX, et al. Decomposition formula for the wall heat flux of a compressible boundary layer. Advances in Aerodynamics, 2021. doi: 10.1186/s42774-021-00081-y
    [26] Sun D, Guo QL, Yuan XX, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction. Physics of Fluids, 2019, 31(12): 126101 doi: 10.1063/1.5123453
    [27] Sun D, Chen JQ, Li C, et al. On the wake structure of a micro-ramp vortex generator in hypersonic flow. Physics of Fluids, 2020, 32(12): 126111 doi: 10.1063/5.0030975
    [28] Liu PX, Guo QL, Sun D, et al. Wall effect on the flow structures of three-dimensional rotating detonation wave. International Journal of. Hydrogen Energy, 2020, 45(53): 29546-29559 doi: 10.1016/j.ijhydene.2020.07.196
    [29] Castro M, Costa B, Don WS. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 2011, 230: 1766-1792 doi: 10.1016/j.jcp.2010.11.028
    [30] Gupta RN, Yos JM, Thomson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. NASA RP-1232, 1990
    [31] Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
    [32] Adler MC, Gonzalez DR, Stack CM, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics. Computers and Fluids, 2018, 165: 127-143 doi: 10.1016/j.compfluid.2018.01.003
    [33] Prozzoli S, Bernardini M, Grasso F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer. Journal of Fluid Mechanics, 2008, 613: 2005-2031
    [34] Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 2007, 579: 1-28 doi: 10.1017/S0022112006003946
    [35] Tong FL, Chen JQ, Sun D, et al. Wall-shear stress fluctuations in a supersonic turbulent boundary layer over an expansion corner, Journal of Turbulence, 2020, 21(7): 1-20
    [36] Lu SS, Willmarth WW. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. Journal of Fluid Mechanics. 1973, 60: 481–511
    [37] Tichenor NR, Humble RA, Bowersox RDW. Response of a hypersonic turbulent boundary layer to favorable pressure gradients. Journal of Fluid Mechanics. 2013, 722: 187–213
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  13
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2021-11-12
  • 网络出版日期:  2021-11-22

目录

    /

    返回文章
    返回