EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

折纸结构和折纸超材料动力学研究进展

方虹斌 吴海平 刘作林 张琦炜 徐鉴

方虹斌, 吴海平, 刘作林, 张琦炜, 徐鉴. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-38 doi: 10.6052/0459-1879-21-478
引用本文: 方虹斌, 吴海平, 刘作林, 张琦炜, 徐鉴. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-38 doi: 10.6052/0459-1879-21-478
Fang Hongbin, Wu Haiping, Liu Zuolin, Zhang Qiwei, Xu Jian. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 doi: 10.6052/0459-1879-21-478
Citation: Fang Hongbin, Wu Haiping, Liu Zuolin, Zhang Qiwei, Xu Jian. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 doi: 10.6052/0459-1879-21-478

折纸结构和折纸超材料动力学研究进展

doi: 10.6052/0459-1879-21-478
基金项目: 国家重点研发计划“智能机器人”重点专项(2020 YFB1312900), 国家自然科学基金(11932015, 11902078)和上海市“科技创新行动计划”启明星(20 QA1400800)资助项目
详细信息
    作者简介:

    徐鉴, 教授, 主要研究方向: 非线性动力学与控制、时滞系统动力学、机器人动力学. E-mail: xujian@tongji.edu.cn

  • 中图分类号: O313

ADVANCES IN THE DYNAMICS OF ORIGAMI STRUCTURES AND ORIGAMI METAMATERIALS

  • 摘要: 折纸结构和折纸超材料由于其无穷的设计空间, 突出的变形状、变大小、变拓扑特性, 以及由折叠诱发的超常规力学特性, 在最近几年迅速成为数学、物理和工程学科的研究前沿和热点. 折纸结构和折纸超材料在航天、医疗、材料、机器人等众多工程领域具有广泛的应用前景, 其典型的代表包括大型空间可展开结构、自折叠可重构机器人、微型可折叠器械等. 随着应用范围的不断扩大, 折纸结构和折纸超材料的动力学问题日益突出, 不仅涉及其动力学建模和参数辨识, 还包括动力学机制分析与实验测试. 折纸结构复杂的空间几何关系、丰富的变形模式、折叠诱发的全局强非线性本构关系等给动力学研究带来了很多新挑战和新机遇. 本文首先阐述了折纸结构和折纸超材料的研究背景和意义, 并简要概述了折纸的基本定义、假设和分类, 以及折纸结构和折纸超材料的几何设计、静力学和运动学特性. 随后, 本文系统回顾了折纸结构和折纸超材料动力学研究中相关问题的最新进展, 包括: (1) 动力学建模及参数辨识方法; (2) 动力学理论、有限元和实验分析手段; (3) 折叠诱发的动力学行为, 包括双稳态和多稳态动力学行为、瞬态动力学行为和波传播动力学行为等; (4) 典型动力学应用. 本文最后提出了折纸结构和折纸超材料动力学研究中若干值得关注的问题.

     

  • 图  1  2014—2021年间在顶级期刊上发表的以Origami为主题的论文

    Figure  1.  Papers on origami published in top journals during 2014—2021

    图  2  以Origami为主题的研究发展历程分析

    Figure  2.  Analysis of the development process of origami-themed research

    图  3  常见的折纸结构的折痕图和三维构型

    Figure  3.  Crease patterns and 3D configurations of classical origami structures

    图  4  折纸结构的超常规运动学和静力学特性[23,28,30,83]

    Figure  4.  Extraordinary kinematic and mechanical properties of origami structures[23,28,30,83]

    图  5  折纸结构和折纸超材料空间桁架等效动力学模型[33,39,90-92]

    Figure  5.  Truss-based equivalent dynamic models of origami structures and origami metamaterials[33,39,90-92]

    图  6  折纸结构和折纸超材料的非线性弹簧等效动力学模型[27,38,87,92]

    Figure  6.  Nonlinear spring-based equivalent dynamic models of origami structures and origami metamaterials[27,38,87,92]

    图  7  折纸结构和折纸超材料基于广义哈密顿原理等效建模研究进展[34,74,97,99-100,104]

    Figure  7.  Equivalent dynamic modeling of origami structures and origami metamaterials based on generalized Hamilton principle[34,74,97,99-100,104]

    图  8  折纸结构和折纸超材料约束及折面接触处理[102,106-107,110]

    Figure  8.  Constraints and contact of origami structures and origami metamaterials

    9  折纸结构和折纸超材料的参数辨识和数据驱动动力学建模[131,140-141]

    9.  Parameter identification and data-driven dynamic modeling of origami structures and origami metamaterials[131,140-141]

    图  9  折纸结构和折纸超材料的参数辨识和数据驱动动力学建模[131,140-141] (续)

    Figure  9.  Parameter identification and data-driven dynamic modeling of origami structures and origami metamaterials[131,140-141] (continued)

    图  10  基于模型的折纸结构动力学分析方法[34,36,74,87,94]

    Figure  10.  Model-based dynamic analysis methods of origami structures[34,36,74,87,94]

    图  11  基于不同单元类型的折纸结构有限元模型[30,78,148]

    Figure  11.  FE models of origami structures based on different types of elements[30,78,148]

    图  12  折纸结构和折纸超材料动力学实验[27,34,39,151]

    Figure  12.  Dynamic experiment of origami structures and origami metamaterials[27,34,39,151]

    13  折纸结构和折纸超材料中的双稳态和多稳态动力学行为[74,96,154]

    13.  Bistable and multi-stable dynamics of origami structures and origami metamaterials[74,96,154]

    图  13  折纸结构和折纸超材料中的双稳态和多稳态动力学行为[74,96,154] (续)

    Figure  13.  Bistable and multi-stable dynamics of origami structures and origami metamaterials[74,96,154] (continued)

    图  14  折叠诱发的可编程刚度相关动力学行为[18,30]

    Figure  14.  Programmable stiffness-dependent dynamics induced by folding[18,30]

    图  15  折纸结构和折纸超材料展开瞬态动力学行为[33,102,144,159]

    Figure  15.  Transient dynamic behaviors of origami structures and origami metamaterials during deployment[33,102,144,159]

    图  16  折纸结构和折纸超材料波动力学行为[38-39,92,169]

    Figure  16.  Wave dynamic behavior of origami structures and origami metamaterials[38-39,92,169]

    图  17  折纸启发的隔振和能量吸收装置[18,62,174,176-178]

    Figure  17.  Origami-inspired vibration isolation and energy absorption devices[18,62,174,176-178]

    图  18  折纸启发的空间可展开结构[15,64-65,82]

    Figure  18.  Origami-inspired space deployable structures[15,64-65,82]

    图  19  折纸启发的波调控装置[20,169,173]

    Figure  19.  Origami-inspired wave tailoring devices[20,169,173]

    图  20  折纸机器人设计和实验原型[6,186-187,189-191]

    Figure  20.  Designs and prototypes of origami robots[6,186-187,189-191]

    表  1  EFRI-ODISSEI资助的项目[13]

    Table  1.   Projects funded by EFRI-ODISSEI[13]

    No.Project titleAwarded amountExecution period
    1 Multi-field Responsive Origami Structures—Advancing the Emerging Frontier of Active Compliant Mechanisms $2,124,000 2012.8—2017.7
    2 Externally-triggered Origami of Responsive Polymer Sheets $1,846,358 2012.8—2018.4
    3 Uniting Principles of Folding and Compliant Mechanisms to Create Engineering Systems with Unprecedented Performance $2,400,000 2012.8—2019.7
    4 Synthesizing Complex Structures from Programmable Self-folding Active Materials $2,398,106 2012.8—2019.7
    5 Photo-origami $1,999,377 2012.8—2014.5
    6 Programmable Origami for Integration of Self-assembling Systems in Engineered Structures $2,000,000 2012.8—2018.7
    7 Mechanical Meta-materials from Self-folding Polymer Sheets $2,008,500 2012.8—2017.7
    8 Multi-scale origami for Novel Photonics, Energy Conversion $2,404,013 2012.8—2021.7
    9 Photomorphon Networks: Intelligent Shape Changing Structures $2,409,749 2013.8—2020.7
    10 Novel Perpetual Reconfigurable & Multi-band "Origami Folding/Unfolding" Electromagnetic Systems for Cognitive Intelligence Applications $2,530,890 2013.8—2021.1
    11 Origami and Assembly Techniques for Human-tissue-engineering (OATH) $2,240,328 2013.8—2019.7
    12 Foldable Self-replicating DNA Nanostructures for Organization of Functional Nanomaterials and 3D Meta-material Assembly $2,260,585 2013.8—2019.7
    13 Cutting and Pasting—Kirigami in Architecture, Technology, and Science $2,399,000 2013.8—2020.7
    Total funding $29,020,953
    Average funding $2,232,379
    下载: 导出CSV
  • [1] Schenk M, Viquerat AD, Seffen KA, et al. Review of inflatable booms for deployable space structures: packing and rigidization. Journal of Spacecraft and Rockets, 2014, 51(3): 762-778 doi: 10.2514/1.A32598
    [2] McPherson BN, Kauffman JL. Dynamics and estimation of origami-inspired deployable space structures: A review//AIAA Scitech 2019 Forum, 2019: 0480
    [3] Reis PM, López Jiménez F, Marthelot J. Transforming architectures inspired by origami. Proceedings of the National Academy of Sciences, 2015, 112(40): 12234-12235 doi: 10.1073/pnas.1516974112
    [4] Doroftei I, Doroftei IA. Deployable structures for architectural applications-a short review. Applied Mechanics and Materials, 2014, 658: 233-240 doi: 10.4028/www.scientific.net/AMM.658.233
    [5] Rus D, Tolley MT. Design, fabrication and control of origami robots. Nature Reviews Materials, 2018, 3(6): 101-112 doi: 10.1038/s41578-018-0009-8
    [6] Felton S, Tolley M, Demaine E, et al. A method for building self-folding machines. Science, 2014, 345(6197): 644-646 doi: 10.1126/science.1252610
    [7] Randall CL, Gultepe E, Gracias DH. Self-folding devices and materials for biomedical applications. Trends Biotechnol, 2012, 30(3): 138-146 doi: 10.1016/j.tibtech.2011.06.013
    [8] Kuribayashi K, Tsuchiya K, You Z, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Materials Science and Engineering A, 2006, 419(1-2): 131-137 doi: 10.1016/j.msea.2005.12.016
    [9] Xu L, Shyu TC, Kotov NA. Origami and kirigami nanocomposites. ACS Nano, 2017, 11(8): 7587-7599 doi: 10.1021/acsnano.7b03287
    [10] Shenoy VB, Gracias DH. Self-folding thin-film materials: From nanopolyhedra to graphene origami. MRS Bulletin, 2012, 37(9): 847-854 doi: 10.1557/mrs.2012.184
    [11] Zadpoor AA. Mechanical meta-materials. Materials Horizons, Royal Society of Chemistry, 2016, 3(5): 371-381 doi: 10.1039/C6MH00065G
    [12] Surjadi JU, Gao L, Du H, et al. Mechanical metamaterials and their engineering applications. Advanced Engineering Materials, 2019, 21(3): 1800864 doi: 10.1002/adem.201800864
    [13] National science fundation award search[EB/OL]. https://www.nsf.gov/awardsearch/simpleSearchResult?queryText=ODISSEI
    [14] Ma J, You Z. Energy absorption of thin-walled beams with a pre-folded origami pattern. Thin-Walled Structures, 2013, 73: 198-206 doi: 10.1016/j.tws.2013.08.001
    [15] Salazar R, Murthy S, Pellazar C et al. TransFormers for lunar extreme environments: Large origami deployable solar reflectors//IEEE Aerospace Conference Proceedings, 2017: 1–7.
    [16] Kim SJ, Lee DY, Jung GP, et al. An origami-inspired, self-locking robotic arm that can be folded flat. Science Robotics, 2018, 3(16): eaar2915 doi: 10.1126/scirobotics.aar2915
    [17] Fang H, Zhang Y, Wang KW. Origami-based earthworm-like locomotion robots. Bioinspiration & Biomimetics, 2017, 12(6): 065003
    [18] Sadeghi S, Li S. Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation. Smart Materials and Structures, 2019, 28(6): 065006 doi: 10.1088/1361-665X/ab143c
    [19] Zhu Y, Fei F, Fan S, et al. Reconfigurable origami-inspired metamaterials for controllable sound manipulation. Physical Review Applied, 2019, 12(3): 034029
    [20] Babaee S, Overvelde JTB, Chen ER, et al. Reconfigurable origami-inspired acoustic waveguides. Science Advances, 2016, 2(11): e1601019 doi: 10.1126/sciadv.1601019
    [21] Fang H, Yu X, Cheng L. Reconfigurable origami silencers for tunable and programmable sound attenuation. Smart Materials and Structures, 2018, 27(9): 095007 doi: 10.1088/1361-665X/aad0b6
    [22] Fang H, Li S, Ji H, et al. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices. Physical Review E, 2016, 94(4): 043002 doi: 10.1103/PhysRevE.94.043002
    [23] Schenk M, Guest SD. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 2013, 110(9): 3276-3281 doi: 10.1073/pnas.1217998110
    [24] Yasuda H, Yang J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Physical Review Letters, 2015, 114(18): 185502 doi: 10.1103/PhysRevLett.114.185502
    [25] Zhou X, Zang S, You Z. Origami mechanical metamaterials based on the Miura-derivative fold patterns. Proceedings of the Royal Society A: Mathematical. Physical and Engineering Sciences, 2016, 472(2191): 20160361
    [26] Liu K, Paulino GH. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2017, 473(2206): 20170348 doi: 10.1098/rspa.2017.0348
    [27] Fang H, Li S, Ji H, et al. Dynamics of a bistable Miura-origami structure. Physical Review E, 2017, 95(5): 052211 doi: 10.1103/PhysRevE.95.052211
    [28] Waitukaitis S, Menaut R, Chen BG, et al. Origami multistability: from single vertices to metasheets. Physical Review Letters, 2015, 114(5): 055503 doi: 10.1103/PhysRevLett.114.055503
    [29] Liu Z, Fang H, Xu J, et al. A novel origami mechanical metamaterial based on Miura-variant designs: exceptional multistability and shape reconfigurability. Smart Materials and Structures, 2021, 30(8): 085029 doi: 10.1088/1361-665X/ac0d0f
    [30] Fang H, Chu SCA, Xia Y, et al. Programmable self-locking origami mechanical metamaterials. Advanced Materials, 2018, 30(15): 1706311 doi: 10.1002/adma.201706311
    [31] Silverberg JL, Evans AA, McLeod L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science, 2014, 345(6197): 647-650 doi: 10.1126/science.1252876
    [32] Novelino LS, Ze Q, Wu S, et al. Untethered control of functional origami microrobots with distributed actuation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24096-24101 doi: 10.1073/pnas.2013292117
    [33] Kidambi N, Wang KW. Dynamics of Kresling origami deployment. Physical Review E, 2020, 101(6): 063003 doi: 10.1103/PhysRevE.101.063003
    [34] Wu H, Fang H, Chen L, et al. Transient dynamics of a miura-origami tube during free deployment. Physical Review Applied, 2020, 14(3): 034068 doi: 10.1103/PhysRevApplied.14.034068
    [35] Sadeghi S, Li S. Dynamic folding of origami by exploiting asymmetric bi-stability. Extreme Mechanics Letters, 2020, 40: 100958 doi: 10.1016/j.eml.2020.100958
    [36] Liu C, Felton SM. Transformation dynamics in origami. Physical Review Letters, 2018, 121(25): 254101 doi: 10.1103/PhysRevLett.121.254101
    [37] Karagiozova D, Zhang J, Lu G, et al. Dynamic in-plane compression of Miura-ori patterned metamaterials. International Journal of Impact Engineering, 2019, 129: 80-100
    [38] Zhang Q, Fang H, Xu J. Programmable stopbands and supratransmission effects in a stacked Miura-origami metastructure. Physical Review E, 2020, 101(4): 042206 doi: 10.1103/PhysRevE.101.042206
    [39] Yasuda H, Miyazawa Y, Charalampidis EG, et al. Origami-based impact mitigation via rarefaction solitary wave creation. Science Advances, 2019, 5(5): eaau2835 doi: 10.1126/sciadv.aau2835
    [40] Li S, Fang H, Sadeghi S, et al. Architected origami materials: how folding creates sophisticated mechanical properties. Advanced Materials, 2019, 31(5): 1805282 doi: 10.1002/adma.201805282
    [41] Turner N, Goodwine B, Sen M. A review of origami applications in mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(14): 2345-2362 doi: 10.1177/0954406215597713
    [42] Lebée A. From folds to structures, a review. International Journal of Space Structures, 2015, 30(2): 55-74 doi: 10.1260/0266-3511.30.2.55
    [43] 李笑, 李明. 折纸及其折痕设计研究综述. 力学学报, 2018, 50(3): 467-476 (Li Xiao, Li Ming. A review of origami and its crease design. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476 (in Chinese) doi: 10.6052/0459-1879-18-031
    [44] Lang RJ, Crampton EB, Magleby SP, et al. A review of thickness-accommodation techniques in origami-inspired engineering. Applied Mechanics Reviews, 2018, 70(1): 016003 doi: 10.1115/1.4039147
    [45] Meloni M, Cai J, Zhang Q, et al. Engineering origami: a comprehensive review of recent applications, design methods, and tools. Advanced Science, 2021, 8: 2000636 doi: 10.1002/advs.202000636
    [46] Dudte LH, Vouga E, Tachi T, et al. Programming curvature using origami tessellations. Nature Materials, 2016, 15(5): 583-588 doi: 10.1038/nmat4540
    [47] Tachi T. Origamizing polyhedral surfaces. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2): 298-311 doi: 10.1109/TVCG.2009.67
    [48] Fang H, Li S, Wang KW. Self-locking degree-4 vertex origami structures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2195): 20160682 doi: 10.1098/rspa.2016.0682
    [49] Miura K. Method of packaging and deployment of large membranes in space. The Institute of Space and Astronautical Science report, 1985, 618: 1-9
    [50] Yasuda H, Yein T, Tachi T, et al. Folding behaviour of Tachi-Miura polyhedron bellows. Proceedings of the Royal Society A:Mathematical, 2013, 469(2159): 20130351
    [51] Boatti E, Vasios N, Bertoldi K. Origami metamaterials for tunable thermal expansion. Advanced Materials, 2017, 29(26): 1700360 doi: 10.1002/adma.201700360
    [52] Chen Y, Feng H, Ma J, et al. Symmetric waterbomb origami. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2190): 20150846 doi: 10.1098/rspa.2015.0846
    [53] Yoshimura Y. On the mechanism of buckling of a circular cylindrical shell under axial compression. National Advisory Committee for Aeronautics, 1955: TM-1390
    [54] Evans TA, Lang RJ, Magleby SP, et al. Rigidly foldable origami gadgets and tessellations. Royal Society Open Science, 2015, 2(9): 150067 doi: 10.1098/rsos.150067
    [55] Onal C D, Wood R J, Rus D. Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms//IEEE International Conference on Robotics and Automation, 2011: 4608-4613
    [56] Yasuda H, Tachi T, Lee M, et al. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nature Communications, 2017, 8: 962 doi: 10.1038/s41467-016-0009-6
    [57] Kresling B, Abel JF, Cooke RJ. Natural twist buckling in shells: from the hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical Miura-ori//The 6 th International Conference on Computation of Shell and Spatial Structures, 2008: 12-32
    [58] Pagano A, Yan T, Chien B, et al. A crawling robot driven by multi-stable origami. Smart Materials and Structures, 2017, 26(9): 094007 doi: 10.1088/1361-665X/aa721e
    [59] Gattas JM, You Z. Geometric assembly of rigid-foldable morphing sandwich structures. Engineering Structures, 2015, 94: 149-159 doi: 10.1016/j.engstruct.2015.03.019
    [60] Lü C, Krishnaraju D, Konjevod G, et al. Origami based mechanical metamaterials. Scientific Reports, 2015, 4(1): 5979 doi: 10.1038/srep05979
    [61] Wang W, Li C, Rodrigue H, et al. Kirigami/origami-based soft deployable reflector for optical beam steering. Advanced Functional Materials, 2017, 27(7): 1604214 doi: 10.1002/adfm.201604214
    [62] Ciampaglia A, Fiumarella D, Boursier Niutta C, et al. Impact response of an origami-shaped composite crash box: Experimental analysis and numerical optimization. Composite Structures, 2021, 256: 113093 doi: 10.1016/j.compstruct.2020.113093
    [63] Yellowhorse A, Tolman K, Howell L L. Optimization of Origami-Based Tubes for Lightweight Deployable Structures//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017, DETC2017-67274
    [64] Webb D, Hirsch B, Bach V, et al. Starshade mechanical architecture & technology effort //AIAA 3rd Spacecraft Structures Conference, 2016: 2165
    [65] Schenk M, Kerr SG, Smyth AM, et al. Inflatable cylinders for deployable space structures. First Conference Transformables, 2013, 9: 1-6
    [66] Kaufmann J, Bhovad P, Li S. Harnessing the multistability of kresling origami for reconfigurable articulation in soft robotic arms. Soft Robotics, 2021: soro.2020.0075 doi: 10.1089/soro.2020.0075
    [67] Cavallo F, Lagally MG. Nano-origami: Art and function. Nano Today, 2015, 10(5): 538-541 doi: 10.1016/j.nantod.2015.07.001
    [68] Ning X, Wang X, Zhang Y, et al. Assembly of advanced materials into 3 D functional structures by methods inspired by origami and kirigami: A review. Advanced Materials Interfaces, 2018, 5(13): 1800284 doi: 10.1002/admi.201800284
    [69] Pehrson NA, Ames DC, Smith SP, et al. Self-deployable, self-stiffening, and retractable origami-based arrays for spacecraft. AIAA Journal, 2020, 58(7): 3221-3228 doi: 10.2514/1.J058778
    [70] Overvelde JTB, De Jong TA, Shevchenko Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nature Communications, 2016, 7(1): 10929 doi: 10.1038/ncomms10929
    [71] Yu H, Guo Z, Wang J. A method of calculating the degree of freedom of foldable plate rigid origami with adjacency matrix. Advances in Mechanical Engineering, 2018, 10(6): 168781401877969
    [72] Ruzzene M, Scarpa F, Soranna F. Wave beaming effects in two-dimensional cellular structures. Smart Materials and Structures, 2003, 12(3): 363-372 doi: 10.1088/0964-1726/12/3/307
    [73] Pratapa PP, Liu K, Paulino GH. Geometric mechanics of origami patterns exhibiting poisson’s ratio switch by breaking mountain and valley assignment. Physical Review Letters, 2019, 122(15): 155501 doi: 10.1103/PhysRevLett.122.155501
    [74] Sadeghi S, Li S. Analyzing the bi-directional dynamic morphing of a bi-stable water-bomb base origami//ISOP Behavior and Mechanics of Multifunctional Materials XIII, 2019, 10968: 109680 S.
    [75] Harne RL, Wang KW. Harnessing Bistable Structural Dynamics: for Vibration Control, Energy Harvesting, and Sensing. John Wiley and Sons, 2017
    [76] Hanna BH, Lund JM, Lang RJ, et al. Waterbomb base : a symmetric single-vertex bistable origami mechanism. Smart Materials and Structures, 2014, 23(9): 094009 doi: 10.1088/0964-1726/23/9/094009
    [77] Chen Z. Multitransformable leaf-out origami with bistable behavior. Journal of Mechanisms and Robotics, 2016, 8(3): 031013 doi: 10.1115/1.4031809
    [78] Cai JQ, Deng XW, Zhou Y, et al. Bistable behavior of the cylindrical origami structure with kresling pattern. Journal of Mechanical Design, 2015, 137(6): 061406 doi: 10.1115/1.4030158
    [79] Silverberg JL, Na JH, Evans AA, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nature Materials, 2015, 14(4): 389-393 doi: 10.1038/nmat4232
    [80] Kamrava S, Mousanezhad D, Ebrahimi H, et al. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Scientific Reports, 2017, 7: 46046 doi: 10.1038/s41598-016-0028-x
    [81] Kim J, Lee D, Kim S et al. A self-deployable origami structure with locking mechanism induced by buckling effect//IEEE International Conference on Robotics and Automation (ICRA), 2015: 3166-3171
    [82] You Z, Cole N. Self-locking bi-stable deployable booms//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006, AIAA 2006-1685
    [83] Filipov ET, Tachi T, Paulino GH, et al. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12321-12326 doi: 10.1073/pnas.1509465112
    [84] Li S, Wang KW. Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning. Smart Materials and Structures, 2015, 24(10): 105031 doi: 10.1088/0964-1726/24/10/105031
    [85] Sengupta S, Li S. Harnessing the anisotropic multistability of stacked-origami mechanical metamaterials for effective modulus programming. Journal of Intelligent Material Systems and Structures, 2018, 29(14): 2933-2945 doi: 10.1177/1045389X18781040
    [86] Li S, Fang H, Wang KW. Recoverable and programmable collapse from folding pressurized origami cellular solids. Physical Review Letters, 2016, 117(11): 114301 doi: 10.1103/PhysRevLett.117.114301
    [87] Fang H, Chang T, Wang KW. Magneto-origami structures: engineering multi-stability and dynamics via magnetic-elastic coupling. Smart Materials and Structures, 2020, 29(1): 015026 doi: 10.1088/1361-665X/ab524e
    [88] Wang LC, Song WL, Zhang YJ, et al. Active reconfigurable tristable square-twist origami. Advanced Functional Materials, 2020, 30(13): 1909087 doi: 10.1002/adfm.201909087
    [89] Yasuda H, Yang J. Tunable frequency band structure of origami-based mechanical metamaterials. Journal of the International Association for Shell and Spatial Structures, 2017, 58(4): 287-294 doi: 10.20898/j.iass.2017.194.905
    [90] Pratapa PP, Suryanarayana P, Paulino GH. Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials. Journal of the Mechanics and Physics of Solids, 2018, 118: 115-132 doi: 10.1016/j.jmps.2018.05.012
    [91] Bhovad P, Li S. Physical reservoir computing with origami and its application to robotic crawling. Scientific Reports, 2021, 11: 13002 doi: 10.1038/s41598-020-79139-8
    [92] Yasuda H, Chong C, Charalampidis EG, et al. Formation of rarefaction waves in origami-based metamaterials. Physical Review E, 2016, 93(4): 043004 doi: 10.1103/PhysRevE.93.043004
    [93] Yasuda H, Yang J. Nonlinear wave dynamics of origami-based mechanical metamaterials//International Symposium on Optomechatronic Technologies. IEEE, 2014(1): 1-3
    [94] Yasuda H, Lee M, Yang J. Tunable wave dynamics in origami-based mechanical metamaterials//ASME 40th Mechanisms and Robotics Conference, 2016: 107
    [95] Sadeghi S, Betsill BD, Li S. Design and optimization of an origami-inspired jumping mechanism with nonlinear stiffness properties//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2019, DETC2019-97706
    [96] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报, 2019, 51(4): 1110-1121 (Qiu H, Fang H, Xu J. Nonlinear dynamical characteristics of a multi-stable series origami structure. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121 (in Chinese) doi: 10.6052/0459-1879-19-115
    [97] Soleimani H, Goudarzi T, Aghdam MM. Advanced structural modeling of a fold in Origami/Kirigami inspired structures. Thin-Walled Structures, 2021, 161: 107406 doi: 10.1016/j.tws.2020.107406
    [98] Fonseca LM, Savi MA. Nonlinear dynamics of an autonomous robot with deformable origami wheels. International Journal of Non-Linear Mechanics, 2020, 125: 103533 doi: 10.1016/j.ijnonlinmec.2020.103533
    [99] Zhou H, Wu H, Xu J, et al. Dynamics of dual-cell series Miura-ori structures with different types of inter-cell connections//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2021, DETC2021-71939
    [100] Xia Y, Kidambi N, Agarwal V et al. The influence of geometry on origami’s deployment dynamics//ISOP Active and Passive Smart Structures and Integrated Systems XIV, 2020, 11376: 113760 L
    [101] Zhang Q, Liu Y, Li M, et al. Simulation of dynamics during deployment of foldable origami structures. International Journal of Structural Stability and Dynamics, 2020, 20(5): 2050058 doi: 10.1142/S0219455420500583
    [102] Yuan T, Liu Z, Zhou Y, et al. Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment. Multibody System Dynamics, 2020, 50(1): 1-24 doi: 10.1007/s11044-020-09737-x
    [103] Han H, Sorokin V, Tang L, et al. A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube. Nonlinear Dynamics, 2021, 105(2): 1313-1325 doi: 10.1007/s11071-021-06650-6
    [104] Han H, Tang L, Cao D, et al. Modeling and analysis of dynamic characteristics of multi-stable waterbomb origami base. Nonlinear Dynamics, 2020, 102(4): 2339-2362 doi: 10.1007/s11071-020-06082-8
    [105] Rodrigues GV, Fonseca LM, Savi MA, et al. Nonlinear dynamics of an adaptve origami-stent system. International Journal of Mechanical Sciences, 2017, 133: 303-318
    [106] Terada Y, Sakamoto H, Okuma M. Characteristics of deployable planar origami structures with partial constraints//AIAA Spacecraft Structures Conference, 2018: 2205
    [107] Fang H, Wang KW, Li S. Asymmetric energy barrier and mechanical diode effect from folding multi-stable stacked-origami. Extreme Mechanics Letters, 2017, 17: 7-15 doi: 10.1016/j.eml.2017.09.008
    [108] Zhang H, Feng H, Huang JL, et al. Generalized modeling of origami folding joints. Extreme Mechanics Letters, 2021, 45: 101213 doi: 10.1016/j.eml.2021.101213
    [109] Zhang T, Kawaguchi K. Folding analysis for thick origami with kinematic frame models concerning gravity. Automation in Construction, 2021, 127(5): 103691
    [110] Zirbel SA, Lang RJ, Thomson MW, et al. Accommodating thickness in origami-based deployable arrays1. Journal of Mechanical Design, 2013, 135(11): 111005
    [111] Chen Y, Peng R, You Z. Origami of thick panels. Science, 2015, 349(6246): 396-400 doi: 10.1126/science.aab2870
    [112] Zhu Y, Filipov ET. An efficient numerical approach for simulating contact in origami assemblages. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475(2230): 2019-0366
    [113] Reid A, Lechenault F, Rica S, et al. Geometry and design of origami bellows with tunable response. Physical Review E, 2017, 95(1): 013002
    [114] Filipov ET, Liu K, Tachi T, et al. Bar and hinge models for scalable analysis of origami. International Journal of Solids and Structures, 2017, 124: 26-45 doi: 10.1016/j.ijsolstr.2017.05.028
    [115] Swartz J, Bremermann H. Discussion of parameter estimation in biological modelling: Algorithms for estimation and evaluation of the estimates. Journal of Mathematical Biology, 1975, 1(3): 241-257 doi: 10.1007/BF01273746
    [116] Bellman R, Jacquez J, Kalaba R, et al. Quasilinearization and the estimation of chemical rate constants from raw kinetic data. Mathematical Biosciences, 1967, 1(1): 71-76 doi: 10.1016/0025-5564(67)90027-2
    [117] Anderson SR, Kadirkamanathan V. Modelling and identification of non-linear deterministic systems in the delta-domain. Automatica, 2007, 43(11): 1859-1868 doi: 10.1016/j.automatica.2007.03.020
    [118] Zhang B, Billings SA. Identification of continuous-time nonlinear systems: The nonlinear difference equation with moving average noise (NDEMA) framework. Mechanical Systems and Signal Processing, 2015, 60-61: 810-835 doi: 10.1016/j.ymssp.2015.01.009
    [119] Deng K, Zhang L, Luo MK. A denoising algorithm for noisy chaotic signals based on the higher order threshold function in wavelet-packet. Chinese Physics Letters, 2011, 28(2): 020502 doi: 10.1088/0256-307X/28/2/020502
    [120] Doyne Farmer J, Sidorowich JJ. Optimal shadowing and noise reduction. Physica D: Nonlinear Phenomena, 1991, 47(3): 373-392 doi: 10.1016/0167-2789(91)90037-A
    [121] Brocker J, Parlitz U, Ogorzalek M. Nonlinear noise reduction. Proceedings of the IEEE, 2002, 90(5): 898-918 doi: 10.1109/JPROC.2002.1015013
    [122] Fan H, Soderstrom T, Mossberg M, et al. Estimation of continuous-time AR process parameters from discrete-time data. IEEE Transactions on Signal Processing, 1999, 47(5): 1232-1244 doi: 10.1109/78.757211
    [123] Zhang X, Xu J. Identification of time delay in nonlinear systems with delayed feedback control. Journal of the Franklin Institute, 2015, 352(8): 2987-2998 doi: 10.1016/j.jfranklin.2014.04.016
    [124] Malik S, Enzner G. Fourier expansion of hammerstein models for nonlinear acoustic system identification//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011: 85-88
    [125] Brewer D, Barenco M, Callard R, et al. Fitting ordinary differential equations to short time course data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366(1865): 519-544 doi: 10.1098/rsta.2007.2108
    [126] Wei S, Han Q, Peng Z, et al. Dynamic analysis of parametrically excited system under uncertainties and multi-frequency excitations. Mechanical Systems and Signal Processing, 2016, 72-73: 762-784 doi: 10.1016/j.ymssp.2015.10.036
    [127] Cheng CM, Dong XJ, Peng ZK, et al. Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems. Nonlinear Dynamics, 2014, 78(2): 1179-1192 doi: 10.1007/s11071-014-1506-y
    [128] Ramsay JO. Functional data analysis. Annual Review of Statistics and Its Application, 2016, 3: 257-295 doi: 10.1146/annurev-statistics-041715-033624
    [129] Wei HL, Billings SA, Liu J. Term and variable selection for non-linear system identification. International Journal of Control, 2004, 77(1): 86-110
    [130] Golub GH, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 1979, 21(2): 215-223 doi: 10.1080/00401706.1979.10489751
    [131] Liu Z, Fang H, Wang KW, et al. A parameter identification method for continuous-time nonlinear systems and its realization on a Miura-origami structure. Mechanical Systems and Signal Processing, 2018, 108: 58-72 doi: 10.1016/j.ymssp.2017.11.029
    [132] Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 2007, 104(24): 9943-9948 doi: 10.1073/pnas.0609476104
    [133] Schmidt M, Lipson H. Distilling free-form natural laws from experimental data. Science, 2009, 324(5923): 81-85 doi: 10.1126/science.1165893
    [134] Koza JR. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992
    [135] Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 2016, 113(15): 3932-3937 doi: 10.1073/pnas.1517384113
    [136] Rudy SH, Brunton SL, Proctor JL, et al. Data-driven discovery of partial differential equations. Science Advances, 2017, 3(4): e1602614 doi: 10.1126/sciadv.1602614
    [137] Eberhart RC. Neural Network PC Tools: A Practical Guide. Academic Press, 2014
    [138] Hebb DO. The Organization of Behavior: A Neuropsychological Theory. Psychology Press, 2005
    [139] Lu S, Başar T. Robust nonlinear system identification using neural-network models. IEEE Transactions on Neural Networks, 1998, 9(3): 407-429 doi: 10.1109/72.668883
    [140] Yasuda H, Yamaguchi K, Miyazawa Y, et al. Data-driven prediction and analysis of chaotic origami dynamics. Communications Physics, 2020, 3(1): 168 doi: 10.1038/s42005-020-00431-0
    [141] Liu Z, Fang H, Xu J. Identification of piecewise linear dynamical systems using physically-interpretable neural-fuzzy networks: Methods and applications to origami structures. Neural Networks, 2019, 116: 74-87 doi: 10.1016/j.neunet.2019.04.007
    [142] An N, Li M, Zhou J. Modeling SMA-enabled soft deployable structures for kirigami/origami reflectors. International Journal of Mechanical Sciences, 2020, 180: 105753 doi: 10.1016/j.ijmecsci.2020.105753
    [143] Du Y, Song C, Xiong J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami. Composites Science and Technology, 2019, 174(2): 94-105
    [144] Kshad MAE, Naguib HE. Development and modeling of multi-phase polymeric origami inspired architecture by using pre-molded geometrical features. Smart Materials and Structures, 2017, 26(2): 025012 doi: 10.1088/1361-665X/26/2/025012
    [145] Chen Y, Feng J. Folding of a type of deployable origami structures. International Journal of Structural Stability and Dynamics, 2012, 12(6): 1250054 doi: 10.1142/S021945541250054X
    [146] Yang K, Xu S, Zhou S, et al. Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption. Thin-Walled Structures, 2018, 123: 100-113 doi: 10.1016/j.tws.2017.11.005
    [147] Song J, Chen Y, Lu G. Axial crushing of thin-walled structures with origami patterns. Thin-Walled Structures, 2012, 54: 65-71 doi: 10.1016/j.tws.2012.02.007
    [148] Hu YC, Zhou YX, Kwok KW, et al. Simulating flexible origami structures by finite element method. International Journal of Mechanics and Materials in Design, 2021, 17: 801-829
    [149] Sane H, Bhovad P, Li S. Actuation performance of fluidic origami cellular structure: A holistic investigation. Smart Materials and Structures, 2018, 27(11): 115014
    [150] Sadeghi S, Allison SR, Bestill B, et al. TMP origami jumping mechanism with nonlinear stiffness. Smart Materials and Structures, 2021, 30(6): 065002 doi: 10.1088/1361-665X/abf5b2
    [151] Xiang XM, Qiang W, Hou B, et al. Quasi-static and dynamic mechanical properties of Miura-ori metamaterials. Thin-Walled Structures, 2020, 157: 106993 doi: 10.1016/j.tws.2020.106993
    [152] Kshad MAE, D'Hondt C, Naguib HE. Carbon nano fibers reinforced composites origami inspired mechanical metamaterials with passive and active properties. Smart Materials and Structures, 2017, 26(10): 105039 doi: 10.1088/1361-665X/aa8832
    [153] Elsayed EA, Basily BB. A continuous folding process for sheet materials. International Journal of Materials and Product Technology, 2004, 21(1-3): 217-238
    [154] Li S, Wang KW. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation. Journal of The Royal Society Interface, 2015, 12: 20150639 doi: 10.1098/rsif.2015.0639
    [155] Sadeghi S, Li S. Harnessing the quasi-zero stiffness from fluidic origami for low frequency vibration isolation//ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2017, SMASIS2017-3754
    [156] Menck PJ, Heitzig J, Marwan N, et al. How basin stability complements the linear-stability paradigm. Nature Physics, 2013, 9(2): 89-92 doi: 10.1038/nphys2516
    [157] Kidambi N, Wang KW. On the deployment of multistable Kresling origami-inspired structures//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2019, DETC2019-97427
    [158] Chen T, Bilal OR, Lang R, et al. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators. Physical Review Applied, 2019, 11(6): 064069
    [159] Xia Y, Wang KW. Dynamics analysis of the deployment of Miura-Origami sheets//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2019, DETC2019-97136
    [160] Deboeuf S, Katzav E, Boudaoud A, et al. Comparative study of crumpling and folding of thin sheets. Physical Review Letters, 2013, 110: 104301
    [161] Cai J, Ren Z, Ding Y, et al. Deployment simulation of foldable origami membrane structures. Aerospace Science and Technology, 2017, 67: 343-353 doi: 10.1016/j.ast.2017.04.002
    [162] Bhuiyan MEH, Semer D, Trease BP. Dynamic modeling and analysis of strain energy and centrifugal force deployment of an origami flasher//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017, DETC2017-68419
    [163] Hossain Bhuiyan M E, Semer D, Trease B P. Parametric Studies of Geometric Design Factors on Static and Dynamic Loading of an Origami Flasher//ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2017, SMASIS2017-3987
    [164] Harris JA, McShane GJ. Impact response of metallic stacked origami cellular materials. International Journal of Impact Engineering, 2021, 147(9): 103730
    [165] Yuan L, Ma J, You Z. Energy absorption capability of origami automobile bumper system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(18): 6577-6587 doi: 10.1177/0954406219862307
    [166] Kshad MAE, Popinigis C, Naguib HE. 3D printing of Ron-Resch-like origami cores for compression and impact load damping. Smart Materials and Structures, 2019, 28(1): 015027 doi: 10.1088/1361-665X/aaec40
    [167] Zhou C, Wang B, Ma J, et al. Dynamic axial crushing of origami crash boxes. International Journal of Mechanical Sciences, 2016, 118: 1-12 doi: 10.1016/j.ijmecsci.2016.09.001
    [168] Nanda A, Karami MA. Tunable bandgaps in a deployable metamaterial. Journal of Sound and Vibration, 2018, 424: 120-136 doi: 10.1016/j.jsv.2018.03.015
    [169] Xu Z, Xu S, Chuang K. Coupled flexural-longitudinal waves in an origami metamaterial with uncoupled creases. Physics Letters A, 2021, 396: 127232 doi: 10.1016/j.physleta.2021.127232
    [170] Xu Z, Wang Y, Zhu R, et al. Torsional bandgap switching in metamaterials with compression-torsion interacted origami resonators. Journal of Applied Physics, 2021, 130(4): 045105 doi: 10.1063/5.0056179
    [171] Zhang M, Yang J, Zhu R. Flexural wave control via origami-based elastic metamaterials//ISOP Health Monitoring of Structural and Biological Systems XIII, 2019, 10972: 109720Q
    [172] Thota M, Li S, Wang KW. Lattice reconfiguration and phononic band-gap adaptation via origami folding. Physical Review B, 2017, 95(6): 064307 doi: 10.1103/PhysRevB.95.064307
    [173] Thota M, Wang KW. Tunable waveguiding in origami phononic structures. Journal of Sound and Vibration, 2018, 430: 93-100 doi: 10.1016/j.jsv.2018.05.031
    [174] Inamoto K, Ishida S. Improved feasible load range and its effect on the frequency response of origami-inspired vibration isolators with Quasi-zero-stiffness characteristics1. Journal of Vibration and Acoustics, 2019, 141(2): 021004
    [175] Ishida S, Suzuki K, Shimosaka H. Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic. Journal of Vibration and Acoustics, 2017, 139(5): 051004
    [176] Yan G, Zou HX, Yan H, et al. Multi-direction vibration isolator for momentum wheel assemblies. Journal of Vibration and Acoustics, 2020, 142(4): 041007
    [177] Zhou C, Zhou Y, Wang B. Crashworthiness design for trapezoid origami crash boxes. Thin-Walled Structures, 2017, 117(8): 257-267
    [178] Li Y, You Z. Open-section origami beams for energy absorption. International Journal of Mechanical Sciences, 2019, 157-158: 741-757
    [179] Bowen L, Trease B, Frecker M et al. Dynamic Modeling and Analysis of an Origami-Inspired Optical Shield for the Starshade Spacecraft//ASME Smart Materials, Adaptive Structures and Intelligent Systems, 2016, SMASIS2016-9172
    [180] Liu Z, Qiu H, Li X, et al. Review of large spacecraft deployable membrane antenna structures. Chinese Journal of Mechanical Engineering, 2017, 30: 1447-1459 doi: 10.1007/s10033-017-0198-x
    [181] Bernardo P, Iulianelli A, Macedonio F, et al. Membrane technologies for space engineering. Journal of Membrane Science, 2021, 626(1): 119177
    [182] Mukesh C, Satish K, Somnath C, et al. A review on developments of deployable membrane-based reflector antennas. Advances in Space Research, 2021, 68(9): 3749-3764 doi: 10.1016/j.asr.2021.06.051
    [183] 王长国, 杜星文, 万志敏. 空间薄膜结构褶皱的数值模拟最新研究进展. 力学进展, 2007, 3: 389-397 (Wang Changguo, Du Xingwen, Wan Zhimin. Recent advances in numerical simulation of spatial membrane structure folds. Advances In Mechanics, 2007, 3: 389-397 (in Chinese) doi: 10.3321/j.issn:1000-0992.2007.03.006
    [184] 彭福军, 谢超, 张良俊. 面向空间应用的薄膜可展开结构研究进展及技术挑战. 载人航天, 2017, 23(4): 13 (Peng Fujun, Xie Chao, Zhang Liangjun. Advancement and technical challenges of deployable membrane structure in space application. Manned Spaceflight, 2017, 23(4): 13 (in Chinese)
    [185] Xu F, Yang Z, He X, et al. Folded sheet resonators that aim at low frequency attenuation of surface elastic waves in solids. Journal of Applied Physics, 2020, 127(16): 164904 doi: 10.1063/1.5135755
    [186] Paez L, Agarwal G, Paik J. Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robotics, 2016, 3(3): 109-119 doi: 10.1089/soro.2016.0023
    [187] Zhang Q, Fang H, Xu J. Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability. Frontiers in Robotics and AI, 2021, 8: 738214
    [188] Liu T, Wang Y, Lee K. Three-dimensional printable origami twisted tower: design, fabrication, and robot embodiment. IEEE Robotics and Automation Letters, 2018, 3(1): 116-123 doi: 10.1109/LRA.2017.2733626
    [189] Sareh P, Chermprayong P, Emmanuelli M, et al. Rotorigami : A rotary origami protective system for robotic rotorcraft. Science Robotics, 2018, 3(22): eaah5228
    [190] Lee D, Kim S, Kim J, et al. Origami wheel transformer : A variable-diameter wheel drive robot. Soft Robotics, 2017, 4(2): 163-180 doi: 10.1089/soro.2016.0038
    [191] Bhovad P, Kaufmann J, Li S. Peristaltic locomotion without digital controllers : Exploiting multi-stability in origami to coordinate robotic motion. Extreme Mechanics Letters, 2019, 32: 100552 doi: 10.1016/j.eml.2019.100552
    [192] Zhakypov Z, Falahi M, Shah M et al. The design and control of the multi-modal locomotion origami robot, Tribot//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 4349-4355
    [193] Zhakypov Z, Paik J. Design methodology for constructing multimaterial origami robots and machines. IEEE Transactions on Robotics, 2018, 34(1): 151-165 doi: 10.1109/TRO.2017.2775655
  • 加载中
图(27) / 表(1)
计量
  • 文章访问数:  815
  • HTML全文浏览量:  177
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 录用日期:  2021-11-29
  • 网络出版日期:  2021-12-02
  • 刊出日期:  2022-01-18

目录

    /

    返回文章
    返回