EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性振动能量俘获技术的若干进展

杨涛 周生喜 曹庆杰 张文明 陈立群

杨涛, 周生喜, 曹庆杰, 张文明, 陈立群. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 doi: 10.6052/0459-1879-21-474
引用本文: 杨涛, 周生喜, 曹庆杰, 张文明, 陈立群. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 doi: 10.6052/0459-1879-21-474
Yang Tao, Zhou Shengxi, Cao Qingjie, Zhang Wenming, Chen Liqun. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 doi: 10.6052/0459-1879-21-474
Citation: Yang Tao, Zhou Shengxi, Cao Qingjie, Zhang Wenming, Chen Liqun. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 doi: 10.6052/0459-1879-21-474

非线性振动能量俘获技术的若干进展

doi: 10.6052/0459-1879-21-474
基金项目: 国家自然科学基金资助项目(12002272, 2021M692642, 12072267和11732006)
详细信息
    作者简介:

    杨涛, 副教授, 主要研究方向: 振动能量俘获、振动抑制等. E-mail: yangtscn@nwpu.edu.cn

    周生喜, 教授, 主要研究方向: 振动能量俘获、压电机器人等. E-mail: zhoushengxi@nwpu.edu.cn

  • 中图分类号: O322

SOME ADVANCES IN NONLINEAR VIBRATION ENERGY HARVESTING TECHNOLOGY

Funds: The project was supported by the (12345678)and (9876543)
  • 摘要: 随着工程中低功耗电子设备和自供能无线传感网络的迅速发展, 使得振动能量俘获在航空航天工程、机械工程、生物医学工程和可持续能源工程等领域得到了广泛地应用. 振动能量俘获不仅可以将振动能转化为可用的电能为微电子设备供电, 还能减少有害振动保护仪器设备. 根据振动能量不同转换机制, 可以将振动能量俘获系统分为静电式、电磁式、压电式、磁致伸缩式、摩擦起电式以及它们的混合式. 其中压电和电磁振动能量转化机制由于结构简单、容易组装、能量转换性能高等优点, 已被广泛应用于各种工程领域中. 受极端环境干扰, 工程中容易出现宽带、低频等振动, 迫使振动能量俘获技术向非线性方向迅猛发展, 进一步吸引了诸多学者对振动能量俘获系统的结构和电路进行优化设计研究. 本文首先综述了非线性振动能量俘获技术近十年来的研究进展, 主要包括设计技术基础、非线性结构设计、动力学分析等方面的研究现状. 其次, 重点阐述了振动能量俘获与振动抑制一体化的主要研究成果, 包括非线性准零刚度和非线性能量汇在振动能量俘获领域的应用. 最后, 总结了振动能量俘获外接电路和主动控制策略的优化设计, 分析了进一步提升非线性振动能量俘获效能的有效方法.

     

  • 图  1  振动能量俘获技术基础

    Figure  1.  Fundamentals of vibration energy harvesting technology

    图  2  电磁-压电混合式振动能量俘获器[45]

    Figure  2.  Electromagnetic-piezoelectric hybrid vibration energy harvesting[45]

    图  3  非线性系统的恢复力和势能

    Figure  3.  Restoring force and potential energy of nonlinear system

    图  4  基于SD振子的双稳态电磁振动能量俘获结构[59]

    Figure  4.  Bistable electromagnetic vibration energy harvesting structure based on SD oscillator[59]

    图  5  基于磁耦合的三稳态压电振动能量俘获器[63]

    Figure  5.  Bistable piezoelectric vibration energy harvesting based on magnetic coupling[63]

    图  6  M型三方向压电振动能量俘获器[74]

    Figure  6.  M-type three-way piezoelectric vibration energy harvesting[74]

    图  7  单稳态非线性振动能量俘获系统的均方电压和平均输出功率[90]

    Figure  7.  Mean square voltage and average output power of monostable nonlinear vibration energy harvesting system[90]

    图  8  开关延迟示意图和开关延迟随电阻的变化[101](续)

    Figure  8.  Schematic diagram of switching delay and change of switching delay with resistance[101] (continued)

    8  开关延迟示意图和开关延迟随电阻的变化[101]

    8.  Schematic diagram of switching delay and change of switching delay with resistance[101]

    图  9  具有高阶准零刚度特性的非线性振动能量俘获器[114]

    Figure  9.  Nonlinear vibration energy harvesting with high-order quasi zero stiffness[114]

    图  10  格子夹层结构非线性能量汇振动能量俘获器[125]

    Figure  10.  Vibration energy harvesting device with nonlinear energy sink of Lattice Sandwich Structure[125]

    图  11  ReL-SSHI电路图[136]

    Figure  11.  ReL-SSHI circuit diagram[136]

    图  12  基于碰撞原理的高能轨道实现方法[137]

    Figure  12.  Realization method of high energy orbit based on collision principle[137]

  • [1] Priya S, Inman DJ. Energy Harvesting Technologies. New York: Springer, 2009
    [2] Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18 doi: 10.1016/j.rser.2017.01.073
    [3] Yildirim T, Ghayesh MH, Li W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable Sustainable Energy Reviews, 2017, 71: 435-449 doi: 10.1016/j.rser.2016.12.073
    [4] 刘祥建, 陈仁文. 压电振动能量收集装置研究现状及发展趋势. 振动与冲击, 2012, 31(16): 169-176) (Liu Xiangjian, Chen Renwen. Current situation and developing trend of piezoelectric vibration energy harvesters. Journal of Vibration and Shock, 2012, 31(16): 169-176) (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.16.033
    [5] 赵争鸣, 王旭东. 电磁能量收集技术现状及发展趋势. 电工技术学报, 2015, 30(13): 1-11) (Zhao Zhengming, Wang Xudong. The State-of-the-Art and the Future Trends of Electromagnetic Energy Harvesting. Transactions of China Electrotechnical Society, 2015, 30(13): 1-11) (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.13.001
    [6] Tan T, Yan Z, Zou H, et al. Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things. Applied Energy, 2019, 254: 113717 doi: 10.1016/j.apenergy.2019.113717
    [7] Li W, Yang X, Zhang W, et al. Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta Mechanica Sinica, 2019, 35(4): 879-893 doi: 10.1007/s10409-019-00851-4
    [8] Yang T, Cao Q. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mechanical Systems and Signal Processing, 2018, 103: 216-235 doi: 10.1016/j.ymssp.2017.10.002
    [9] Cao J, Wang W, Zhou S, et al. Nonlinear time-varying potential bistable energy harvesting from human motion. Applied Physics Letters, 2015, 107(14): 143904 doi: 10.1063/1.4932947
    [10] Wang G, Liao WH, Zhao Z, et al. Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dynamics, 2019, 97(4): 2371-2397 doi: 10.1007/s11071-019-05133-z
    [11] Gao M, Wang Y, Wang Y, et al. Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation. Applied Energy, 2018, 220: 856-875 doi: 10.1016/j.apenergy.2018.03.170
    [12] Wang C, Zhang Q, Wang W. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. Journal of Sound and Vibration, 2017, 399: 169-181 doi: 10.1016/j.jsv.2017.02.048
    [13] Cao Q, Xiong Y, Wiercigroch M. A novel model of dipteran flight mechanism. International Journal of Dynamics and Control, 2013, 1(1): 1-11 doi: 10.1007/s40435-013-0001-5
    [14] 杨绍普, 曹庆杰, 张伟. 非线性动力学与控制的若干理论及应用. 北京: 科学出版社, 2011

    Yang Shaopu, Cao Qingjie, Zhang Wei. Some Theories and Applications of Nonlinear Dynamics and Control. Beijing: Science Press, 2011 (in Chinese))
    [15] 杨涛. 多稳态能量收集系统的非线性动力学行为及应用研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Yang Tao. Study on nonlinear dynamic behavior and application of multi-stable energy harvesting systems. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese))
    [16] Zou H, Zhang W, Li W, et al. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: design, modeling and experiments. Journal of Sound and Vibration, 2018, 416: 55-79 doi: 10.1016/j.jsv.2017.11.041
    [17] Zhou S, Cao J, Erturk A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 2013, 102(17): 173901 doi: 10.1063/1.4803445
    [18] Chen LQ, Jiang WA, Panyam M, et al. A broadband internally resonant vibratory energy harvester. Journal of Vibration and Acoustics, 2016, 138(6): 061007 doi: 10.1115/1.4034253
    [19] Chen LQ, Jiang WA. Internal resonance energy harvesting. Journal of Applied Mechanics, 2015, 82(3): 031004 doi: 10.1115/1.4029606
    [20] Daqaq MF. Response of uni-modal Duffing-type harvesters to random forced excitations. Journal of Sound and Vibration, 2010, 329: 3621-3631 doi: 10.1016/j.jsv.2010.04.002
    [21] 吴子英, 叶文腾, 刘强. 双稳态电磁式振动能量捕获器超谐波响应研究. 计算力学学报, 2017, 43(5): 623-630 (Wu Ziying, Ye Wenteng, Liu Qiang. Research on the superharmonic effects of bistable electromagnetic vibration energy harvester. Chinese Journal of Computational Mechanics, 2017, 43(5): 623-630 (in Chinese)
    [22] Wang G, Wu H, Liao WH, et al. A modified magnetic force model and experimental validation of a tri-stable piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 2020, 31(7): 967-979 doi: 10.1177/1045389X20905975
    [23] Wang C, Zhang Q, Wang W, et al. A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mechanical Systems and Signal Processing, 2018, 112: 305-318 doi: 10.1016/j.ymssp.2018.04.027
    [24] Jiang WA, Chen LQ. Snap-through piezoelectric energy harvesting. Journal of Sound and Vibration, 2014, 333(18): 4314-4325 doi: 10.1016/j.jsv.2014.04.035
    [25] Yang T, Cao Q. Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dynamics, 2019, 96: 1511-1530 doi: 10.1007/s11071-019-04868-z
    [26] Yang T, Cao Q. Dynamics and energy generation of a hybrid energy harvester under colored noise excitations. Mechanical Systems and Signal Processing, 2019, 121: 745-766 doi: 10.1016/j.ymssp.2018.12.004
    [27] Wei C, Jing X. Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Communications in Nonlinear Science and Numerical Simulation, 2017, 48: 288-306 doi: 10.1016/j.cnsns.2016.12.026
    [28] 陈仁文, 任龙, 夏桦康等. 多方向宽频带压电式振动能量采集器研究进展. 仪器仪表学报, 2018, 151(12): 250-260 (Wang F, Sun X, Xu J. A novel energy harvesting device for ultralow frequency excitation. Energy, 2018, 151(12): 250-260
    [29] 陈文艺, 孟爱华, 刘成龙. 微型振动能量收集器的研究现状及发展趋势. 微纳电子技术, 2013, 11: 715-720 (Chen Wenyi, Meng Aihua, Liu Chenglong. Research status and developing trend of micro vibration-based energy harvesters. Micronanoelectronic Technology, 2013, 11: 715-720 (in Chinese)
    [30] 岳喜海, 杨进, 文玉梅等. 多方向宽频磁电式振动能量采集器. 仪器仪表学报, 2013, 34(9): 1961-1967 (Yue Xihai, Yang Jin, Wen Yumei, et al. Multidirectional broadband magnetoelectric vibration energy collector. Chinese Journal of Scientific Instrument, 2013, 34(9): 1961-1967 (in Chinese)
    [31] 张允, 王战江, 蒋淑兰等. 振动能量收集技术的研究现状与展望. 机械科学与技术, 2019, 7: 7-40 (Zhang Yun, Wang Zhanjiang, Jiang Shulan, et al. Retrospectives and perspectives of vibration energy harvest technologies. Mechanical Science and Technology for Aerospace Engineering, 2019, 7: 7-40 (in Chinese)
    [32] 何远钦. 压电能量收集概论. 装备制造技术, 2011, 8: 56-58) (He Yuanqin. Conspectus of piezoelectric energy harvesting. Equipment Manufacturing Technology, 2011, 8: 56-58) (in Chinese) doi: 10.3969/j.issn.1672-545X.2011.02.021
    [33] 唐刚, 刘景全, 马华安等. 微型压电振动能量采集器的研究进. 机械设计与研究, 2010, 26(4): 61-64 (Tang Gang, Liu Jingquan, Ma Hua'an, et al. A survey on research of micro piezoelectric vibration energy harvesters. Mechanical Design and Research, 2010, 26(4): 61-64 (in Chinese)
    [34] 陈婧, 苏娟, 杜松怀等. 悬臂梁压电发电机输出特性及其影响因素分析. 电网与清洁能源, 2014, 30: 77-83 (Chen Jing, Su Juan, Du songhuai, et al. Analysis of the output characteristic and influence factors of the cantilever piezoelectric generator. Advances of Power System & Hydroelectric Engineering, 2014, 30: 77-83 (in Chinese) doi: 10.3969/j.issn.1674-3814.2014.08.018
    [35] Li H, Tian C, Deng ZD. Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews, 2014, 1(4): 041301 doi: 10.1063/1.4900845
    [36] 吴鹏飞, 袁天辰, 杨俭. 非线性电磁振动能量采集的辨识研究. 振动工程学报, 2021, 34(1): 116-126 (Wu Pengfei, Yuan Tianchen, Yang Jian. System identification of single-DOF electromagnetic vibration energy collector. Journal of Vibration Engineering, 2021, 34(1): 116-126 (in Chinese)
    [37] Carneiro P, Santos MPS, Rodrigues A, et al. Electromagnetic energy harvesting using magnetic levitation architectures: A review. Applied Energy, 2020, 260: 114119
    [38] 钱铄, 杨子杨, 崔丹凤等. 电磁−压电复合式机械能量收集器. 测试技术学报, 2019, 33: 60-66 (Qian Shuo, Yang Ziyang, Cui Danfeng, et al. Electromagnetic-piezoelectric hybrid generator for mechanical energy. Journal of Test and Measurement Technology, 2019, 33: 60-66 (in Chinese)
    [39] Liu H, Fu H, Sun L, et al. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renewable and Sustainable Energy Reviews, 2021, 137: 110473 doi: 10.1016/j.rser.2020.110473
    [40] Challa VR, Prasad MG, Fisher FT. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Materials and Structures, 2009, 18(9): 95029 doi: 10.1088/0964-1726/18/9/095029
    [41] Karami MA, Inman DJ. Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. Journal of Sound and Vibration, 2011, 330(23): 5583-5597 doi: 10.1016/j.jsv.2011.06.021
    [42] Lallart M, Inman DJ. Mechanical Effect of Combined Piezoelectric and Electromagnetic Energy Harvesting. Structural Dynamics and Renewable Energy, New York: Springer, 2011, 261-272
    [43] Rajarathinam M, Ali SF. Energy generation in a hybrid harvester under harmonic excitation. Energy Conversion and Management, 2018, 155: 10-19 doi: 10.1016/j.enconman.2017.10.054
    [44] Zhao L, Zou H, Yan G, et al. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Applied Energy, 2019, 239(1): 735-746
    [45] Li Z, Li T, Yang Z, et al. Toward a 0.33W piezoelectric and electromagnetic hybrid energy harvester:Design, experimental studies and self-powered applications. Applied Energy, 2019, 255: 113805
    [46] Beeby SP, Torah RN, Tudor MJ, et al. A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and microengineering, 2017, 17(7): 1257
    [47] Challa V, Prasad M, Shi Y, et al. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 2008, 75: 1-10
    [48] 韩彦伟. 一类几何非线性系统的动力学行为及应用研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2015

    Han Yanwei. Nonlinear dynamics of a class of geometrical nonlinear system and its application. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2015 (in Chinese))
    [49] Han Y, Cao Q, Chen Y, et al. A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Science China Physics, Mechanics and Astronomy, 2012, 10: 1832-1843
    [50] Han Y, Cao Q, Chen Y, et al. Chaotic thresholds for the piecewise linear discontinuous system with multiple well potentials. International Journal of Non-Linear Mechanics, 2015, 70: 145-152 doi: 10.1016/j.ijnonlinmec.2014.09.007
    [51] Han N, Cao Q. Global bifurcations of a rotating pendulum with irrational nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 431-445
    [52] Hao Z, Cao Q, Wiercigroch M. Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 2017, 87(2): 987-1014 doi: 10.1007/s11071-016-3093-6
    [53] Barton D, Burrow S, Clare L. Energy harvesting from vibrations with a nonlinear oscillator. Journal of Vibration and Acoustics, 2010, 132: 0210091
    [54] Masana R, Daqaq MF. Electromechanical modeling and nonlinear analysis of axially-loaded energy harvesters. Journal of Vibration and Acoustics, 2011, 133: 011007 doi: 10.1115/1.4002786
    [55] Ramlan R, Brennan MJ, Mace RB, et al. Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dynamics, 2010, 59: 545-558 doi: 10.1007/s11071-009-9561-5
    [56] Cao Q, Wiercigroch M, Pavlovskaia EE, et al. Archetypal oscillator for smooth and discontinuous dynamics. Physical Review E, 2006, 74: 046218 doi: 10.1103/PhysRevE.74.046218
    [57] Hao Z, Cao Q, Wiercigroch M. Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dynamics, 2016, 86: 2129-2144 doi: 10.1007/s11071-016-2685-5
    [58] Yang T, Liu J, Cao Q. Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting. Physica A, 2018, 507: 358-373 doi: 10.1016/j.physa.2018.05.103
    [59] Jiang WA, Chen LQ. Stochastic averaging of energy harvesting systems. International Journal of Non-Linear Mechanics, 2016, 85: 174-187 doi: 10.1016/j.ijnonlinmec.2016.07.002
    [60] Liu WQ, Badel A, Formosa F, et al. Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester. Smart Materials and Structures, 2013, 22: 125038 doi: 10.1088/0964-1726/22/12/125038
    [61] Liu WQ, Badel A, Formosa F, et al. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting. Smart Materials and Structures, 2013, 22: 035013 doi: 10.1088/0964-1726/22/3/035013
    [62] Zhou S, Cao J, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
    [63] Panyam M, Daqaq MF. Characterizing the effective bandwidth of tri-stable energy harvesters. Journal of Sound and Vibration, 2017, 386: 336-358 doi: 10.1016/j.jsv.2016.09.022
    [64] Li H, Qin W, Lan C, et al. Dynamics and coherence resonance of Tri-stable energy harvesting system. Smart Materials and Structures, 2015, 25(1): 015001
    [65] Leng Y, Tan D, Liu J, et al. Magnetic force analysis and performance of a Tri-stable piezoelectric energy harvester under random excitation. Journal of Sound and Vibration, 2017, 406: 146-60 doi: 10.1016/j.jsv.2017.06.020
    [66] Wang G, Zhao Z, Liao WH, et al. Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mechanical Systems and Signal Processing, 2020, 138: 106571 doi: 10.1016/j.ymssp.2019.106571
    [67] Zhou Z, Qin W, Zhu P. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sensors and Actuators A:Physical, 2016, 243: 151-158 doi: 10.1016/j.sna.2016.03.024
    [68] Zhou Z, Qin W, Yang Y, et al. Improving efficiency of energy harvesting by a novel penta-stable configuration. Sensors and Actuators A:Physical, 2017, 265: 297-305 doi: 10.1016/j.sna.2017.08.039
    [69] Kim IH, Jung HJ, Bo ML, et al. Broadband energy-harvesting using a two degree-of-freedom vibrating body. Applied Physics Letters, 2011, 98(21): 214102 doi: 10.1063/1.3595278
    [70] Andò B, Baglio S, Maiorca F, et al. Analysis of two dimensional, wide-band, bistable vibration energy harvester. Sensors and Actuators A:Physical, 2013, 202(11): 176-182
    [71] Park JC, Park JY. Asymmetric PZT bimorph cantilever for multi-dimensional ambient vibration harvesting. Ceramics International, 2013, 39: S653-S657 doi: 10.1016/j.ceramint.2012.10.155
    [72] Su WJ, Zu J. An innovative tri-directional broadband piezoelectric energy harvester. Applied Physics Letters, 2013, 103(20): 203901 doi: 10.1063/1.4830371
    [73] Chen K, Gao F, Liu Z, et al. A nonlinear M-shaped tri-directional piezoelectric energy harvester. Smart Materials and Structures, 2021, 30(4): 045017 doi: 10.1088/1361-665X/abe87e
    [74] Xu J, Tang J. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Applied Physics Letters, 2015, 107(21): 213902 doi: 10.1063/1.4936607
    [75] Xu J, Tang J. Modeling and analysis of piezoelectric cantilever-pendulum system for multi-directional energy harvesting. Journal of Intelligent Material Systems and Structure, 2017, 28(3): 323-338 doi: 10.1177/1045389X16642302
    [76] Chen R, Long R, Xia H, et al. Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester. Sensors and Actuators A:Physical, 2015, 230: 1-8 doi: 10.1016/j.sna.2015.03.038
    [77] Feng L, Liu G, Guo H, et al. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47: 217-223 doi: 10.1016/j.nanoen.2018.02.042
    [78] Gu Y, Liu W, Zhao C, et al. A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting. Applied Energy, 2020, 266: 114846 doi: 10.1016/j.apenergy.2020.114846
    [79] Zhang Y, Yang F, Li Y, et al. Design and numerical investigation of a multi-directional energy-harvesting device for UUVs. Energy, 2020, 214: 118978
    [80] Yang T, Cao Q, Li Q, et al. A multi-directional multistable device: Modeling, experiment verification and applications. Mechanical Systems and Signal Processing, 2021, 146: 106986 doi: 10.1016/j.ymssp.2020.106986
    [81] Zheng R, Nakano K, Hu H, et al. An application of stochastic resonance for energy harvesting in a bistable vibrating system. Journal of Sound and Vibration, 2014, 333: 2568-2587 doi: 10.1016/j.jsv.2014.01.020
    [82] Fokou IM, Buckjohn CND, Siewe MS, et al. Probabilistic distribution and stochastic P-bifurcation of a hybrid energy harvester under colored noise. Communications in Nonlinear Science and Numerical Simulation, 2018, 56: 177-197 doi: 10.1016/j.cnsns.2017.08.006
    [83] Li H, Qin W. Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dynamics, 2015, 81: 1751-1757 doi: 10.1007/s11071-015-2104-3
    [84] Daqaq MF. On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dynamics, 2012, 69: 1063-1079 doi: 10.1007/s11071-012-0327-0
    [85] Borowiec M, Litak G, Friswell MI, et al. Energy harvesting in a nonlinear cantilever piezoelastic beam system excited by random vertical vibrations. International Journal of Structural Stability and Dynamics, 2014, 14(08): 1440018 doi: 10.1142/S0219455414400185
    [86] Kumar P, Narayanan S, Adhikari S, et al. Fokker-Planck equation analysis of randomly excited nonlinear energy harvester. Journal of Sound and Vibration, 2014, 333: 2040-2053 doi: 10.1016/j.jsv.2013.11.011
    [87] 李海涛. 非线性能量采集系统的相干共振与动力学特性研究[博士论文]. 西安: 西北工业大学, 2017

    Li Haitao. Dynamics and coherence resonance of nonlinear energy harvesting system[PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2017 (in Chinese))
    [88] Xiao S, Jin Y. Response analysis of the piezoelectric energy harvester under correlated white noise. Nonlinear Dynamics, 2017, 90(3): 2069-2082 doi: 10.1007/s11071-017-3784-7
    [89] Xu M, Jin X, Wang Y, et al. Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dynamics, 2014, 78: 1451-1459 doi: 10.1007/s11071-014-1527-6
    [90] Jin X, Wang Y, Xu M, et al. Semi-analytical solution of random response for nonlinear vibration energy harvesters. Journal of Sound and Vibration, 2015, 340: 267-282 doi: 10.1016/j.jsv.2014.11.043
    [91] 姜文安. 振动能量非线性采集器的解析、数值和实验研究[博士论文]. 上海: 上海大学, 2015

    Jiang Wenan. Analysis, Simulation and Experiment of Vibration-based Nonlinear Energy Harvesting[PhD Thesis]. Shanghai: Shanghai University, 2015 (in Chinese))
    [92] Zhang Y, Jin Y. Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dynamics, 2019, 98(1): 501-515 doi: 10.1007/s11071-019-05208-x
    [93] 胡海岩, 王在华. 非线性时滞动力系统的研究进展. 力学进展, 1999, 29(4): 501-512 (Hu Haiyan, Wang Zaihua. Review on nonlinear dynamic systems involving time delay. Advances in Mechanics, 1999, 29(4): 501-512 (in Chinese) doi: 10.3321/j.issn:1000-0992.1999.04.008
    [94] 徐鉴, 裴利军. 非线性时滞动力系统的研究进展. 力学进展, 2006, 36(1): 17-30 (Xu Jian, Pei Lijun. Advances in dynamics for delay systems. Advances in Mechanics, 2006, 36(1): 17-30 (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.01.008
    [95] 蔡国平, 陈龙祥. 时滞反馈控制的若干问题. 力学进展, 2013, 43(1): 21-28 (Cai Guoping, Chen Longxiang. Some problems of delayed feedback control. Advances in Mechanics, 2013, 43(1): 21-28 (in Chinese) doi: 10.6052/1000-0992-12-014
    [96] 张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展. 力学学报, 2017, 49(3): 565-587 (Zhang Shu, Xu Jian. Review on nonlinear dynamics in systems with coupling delays. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587 (in Chinese) doi: 10.6052/0459-1879-17-123
    [97] Ghouli Z, Hamdi M, Lakrad F, et al. Quasiperiodic energy harvesting in a forced and delayed duffing harvester device. Journal of Sound and Vibration, 2017, 407: 271-285 doi: 10.1016/j.jsv.2017.07.005
    [98] Ghouli Z, Hamdi M, Belhaq M. Energy harvesting from quasi-periodic vibrations using electromagnetic coupling with delay. Nonlinear Dynamics, 2017, 89(3): 1625-1636 doi: 10.1007/s11071-017-3539-5
    [99] Belhaq M, Ghouli Z, Hamdi M. Energy harvesting in a Mathieu-van der Pol-Duffing MEMS device using time delay. Nonlinear Dynamics, 2018, 94: 2537-2546 doi: 10.1007/s11071-018-4508-3
    [100] Chen Z, He J, Liu J, et al. Switching delay in self-powered nonlinear piezoelectric vibration energy harvesting circuit: mechanisms, effects, and solutions. IEEE Transactions on Power Electronics, 2018, 34(3): 2427-2440
    [101] 陆泽琦, 陈立群. 非线性被动隔振的若干进展. 力学学报, 2017, 49(3): 550-564 (Lu Zeqi, Chen Liqun. Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564 (in Chinese)
    [102] Tang X, Zuo L. Simultaneous energy harvesting and vibration control of structures with tuned mass dampers. Journal of Intelligent Material Systems and Structures, 2012, 23(18): 2117-2127 doi: 10.1177/1045389X12462644
    [103] Brennan MJ, Tang B, Melo GP, et al. An investigation into the simultaneous use of a resonator as an energy harvester and a vibration absorber. Journal of Sound and Vibration, 2014, 333(5): 1331-1343 doi: 10.1016/j.jsv.2013.10.035
    [104] Davis RB, McDowell MD. Combined Euler column vibration isolation and energy harvesting. Smart Materials and Structures, 2017, 26(5): 055001 doi: 10.1088/1361-665X/aa6721
    [105] Zhang W, Zhao J. Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 2016, 86(1): 17-36 doi: 10.1007/s11071-016-2869-z
    [106] Wang K, Zhou J, Xu D, Ouyang H. Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mechanical Systems and Signal Processing, 2019, 124: 664-678 doi: 10.1016/j.ymssp.2019.02.008
    [107] Ding H, Chen LQ. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dynamics, 2019, 95(3): 2367-2382 doi: 10.1007/s11071-018-4697-9
    [108] Drezet C, Kacem N, Bouhaddi N. Design of a nonlinear energy harvester based on high static low dynamic stiffness for low frequency random vibrations. Sensors and Actuators A:Physical, 2018, 283: 54-64 doi: 10.1016/j.sna.2018.09.046
    [109] Cao D, Guo X, Hu W. A novel low-frequency broadband piezoelectric energy harvester combined with a negative stiffness vibration isolator. Journal of Intelligent Material Systems and Structures, 2019, 30(7): 1045389X1982983 (2019)
    [110] Zou D, Liu G, Rao Z, et al. A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mechanical Systems and Signal Processing, 2020, 147: 107101
    [111] Lu Z, Wu D, Ding H, et al. Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Applied Mathematical Modelling, 2020, 89: 249-267
    [112] Lu Z, Shao D, Fang Z, et al. Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate. Journal Vibration and Control, 2019, 26(9-10): 107754631988981
    [113] Yang T, Cao Q, Hao Z. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mechanical Systems and Signal Processing, 2021, 155: 107636 doi: 10.1016/j.ymssp.2021.107636
    [114] Ahmadabadi ZN, Khadem SE. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. Journal of Sound and Vibration, 2014, 333: 4444-4457 doi: 10.1016/j.jsv.2014.04.033
    [115] Zhang Y, Tang LH, Liu KF. Piezoelectric energy harvesting with a nonlinear energy sink. Journal of Intelligent Material Systems and Structures, 2017, 28: 307-322 doi: 10.1177/1045389X16642301
    [116] Li X, Zhang Y, Ding H, et al. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition) , 2017, 38: 1019-1030 doi: 10.1007/s10483-017-2220-6
    [117] Xiong L, Tang L, Liu K, et al. Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. Journal of Physics D:Applied Physics, 2018, 51: 185502 doi: 10.1088/1361-6463/aab9e3
    [118] Kremer D, Liu K. A nonlinear energy sink with an energy harvester: Transient responses. Journal of Sound and Vibration, 2014, 333(20): 4859-4880 doi: 10.1016/j.jsv.2014.05.010
    [119] Kremer D, Liu K. A nonlinear energy sink with an energy harvester: Harmonically forced responses. Journal of Sound and Vibration, 2017, 410: 287-302 doi: 10.1016/j.jsv.2017.08.042
    [120] Pennisi G, Mann BP, Naclerio N, et al. Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester. Journal of Sound and Vibration, 2018, 437: 340-357 doi: 10.1016/j.jsv.2018.08.026
    [121] Remick K, Quinn DD, McFarland DM, et al. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. Journal of Sound and Vibration, 2016, 370: 259-279 doi: 10.1016/j.jsv.2016.01.051
    [122] Fang Z, Zhang Y, Li X, et al. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. Journal of Sound and Vibration, 2017, 391: 35-49 doi: 10.1016/j.jsv.2016.12.019
    [123] Fang Z, Zhang Y, Li X, et al. Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. Journal of Vibration and Acoustics, 2018, 140(2): 021009 doi: 10.1115/1.4038033
    [124] Zhang Y, Su C, Ni Z, et al. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Composite Structures, 2019, 221: 110875 doi: 10.1016/j.compstruct.2019.04.047
    [125] Zhang Y, Wang S, Ni Z, et al. Integration of a nonlinear vibration absorber and levitation magnetoelectric energy harvester for wholespacecraft systems. Acta Mechanica Solida Sinica, 2019, 32: 298-309 doi: 10.1007/s10338-019-00081-y
    [126] Tian W, Li Y, Yang Z, et al. Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink. International Journal of Mechanical Sciences, 2020, 172: 105417 doi: 10.1016/j.ijmecsci.2020.105417
    [127] Chiacchiari S, Romeo F, McFarland DM, et al. Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment. International Journal of Non-Linear Mechanics, 2017, 94: 84-97 doi: 10.1016/j.ijnonlinmec.2017.04.007
    [128] Shu YC, Lien IC, Wu WJ. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 2007, 16(6): 2253 doi: 10.1088/0964-1726/16/6/028
    [129] Lallart M, Guyomar D. An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials and Structures, 2008, 17(3): 035030 doi: 10.1088/0964-1726/17/3/035030
    [130] Wu Y, Badel A, Formosa F, et al. Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. Journal of Intelligent Material Systems and Structures, 2013, 24(12): 1445-1458 doi: 10.1177/1045389X12470307
    [131] Wang G, Li P, Wen Y, et al. Self-powered ultra-low-power low-threshold synchronous circuit for weak piezoelectric energy harvesting. Sensors and Actuators A:Physical, 2021, 322: 112632 doi: 10.1016/j.sna.2021.112632
    [132] Zhu L, Chen R, Liu X. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 2012, 23(4): 441-451 doi: 10.1177/1045389X11435433
    [133] Shi G, Xia Y, Wang X, et al. An efficient self-powered piezoelectric energy harvesting CMOS interface circuit based on synchronous charge extraction technique. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 605(2): 804-817
    [134] Cheng C, Chen Z, Xiong Y, et al. A high-efficiency, self-powered nonlinear interface circuit for bi-stable rotating piezoelectric vibration energy harvesting with nonlinear magnetic force. International Journal of Applied Electromagnetics and Mechanics, 2016, 51(3): 235-248 doi: 10.3233/JAE-150093
    [135] Wang X, Xia Y, Shi G, et al. A self-powered rectifier-less synchronized switch harvesting on inductor interface circuit for piezoelectric energy harvesting. IEEE Transactions on Power Electronics, 2021, 36(8): 9149-9159 doi: 10.1109/TPEL.2021.3052573
    [136] Zhou S, Cao J, Inman DJ, et al. Impact-induced high-energy orbits of nonlinear energy harvesters. Applied Physics Letters, 2015, 106(9): 093901 doi: 10.1063/1.4913606
    [137] Zhou S, Cao J, Lin J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 2016, 86(3): 1599-1611 doi: 10.1007/s11071-016-2979-7
    [138] Fang S, Wang S, Miao G, et al. Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect. Nonlinear Dynamics, 2020, 101(1): 123-152 doi: 10.1007/s11071-020-05732-1
    [139] Mallick D, Amann A, Roy S. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters. Physical Review Letters, 2016, 117(19): 197701 doi: 10.1103/PhysRevLett.117.197701
    [140] Lan C, Tang L, Qin W. Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations. The European Physical Journal Applied Physics, 2017, 79(2): 20902 doi: 10.1051/epjap/2017170051
  • 加载中
图(13)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  102
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 录用日期:  2021-10-20
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回