EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属增材制造中的缺陷、组织形貌和成形材料力学性能

陈泽坤 蒋佳希 王宇嘉 曾永攀 高洁 李晓雁

陈泽坤, 蒋佳希, 王宇嘉, 曾永攀, 高洁, 李晓雁. 金属增材制造中的缺陷、组织形貌和成形材料力学性能. 力学学报, 2021, 53(12): 3190-3205 doi: 10.6052/0459-1879-21-472
引用本文: 陈泽坤, 蒋佳希, 王宇嘉, 曾永攀, 高洁, 李晓雁. 金属增材制造中的缺陷、组织形貌和成形材料力学性能. 力学学报, 2021, 53(12): 3190-3205 doi: 10.6052/0459-1879-21-472
Chen Zekun, Jiang Jiaxi, Wang Yujia, Zeng Yongpan, Gao Jie, Li Xiaoyan. Defects, microstructures and mechanical properties of materials fabricated by metal additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205 doi: 10.6052/0459-1879-21-472
Citation: Chen Zekun, Jiang Jiaxi, Wang Yujia, Zeng Yongpan, Gao Jie, Li Xiaoyan. Defects, microstructures and mechanical properties of materials fabricated by metal additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205 doi: 10.6052/0459-1879-21-472

金属增材制造中的缺陷、组织形貌和成形材料力学性能

doi: 10.6052/0459-1879-21-472
基金项目: 北京市自然科学基金资助项目(Z180014)
详细信息
    作者简介:

    李晓雁, 教授, 主要研究方向: 新型微纳米材料的设计、制备以及力学研究. E-mail: xiaoyanlithu@tsinghua.edu.cn

  • 中图分类号: O341

DEFECTS, MICROSTRUCTURES AND MECHANICAL PROPERTIES OF MATERIALS FABRICATED BY METAL ADDITIVE MANUFACTURING

  • 摘要: 金属增材制造是近30年发展起来的一种新型制造技术, 不同于传统的减材制造过程, 它是基于离散-堆积原理, 根据设计的三维数据模型, 逐层加工获得立体实物的制造技术, 具有近净成形、快速制造、设计自由度高等优点, 特别适用于具有复杂几何结构的高熔点金属构件的直接成形, 在航天航空、核能工业、交通运输、生物医疗等领域具有巨大的技术优势和广阔的应用前景. 本文首先介绍了3种典型的金属增材制造技术原理, 包括选区激光熔化技术、激光金属沉积技术和选区电子束熔化技术. 随后对金属增材制造中的熔合不良、气孔、裂纹等缺陷的形成机理及其控制方法进行了综述, 以激光功率、扫描速度和扫描策略等工艺参数为例阐述了工艺参数对成形构件组织形貌的影响, 同时介绍了金属增材制造技术在传统合金、高熵合金以及非晶合金等材料中的应用及其力学性能. 最后对金属增材制造在扩充可打印的合金体系、量化缺陷与残余应力对材料性能的影响、发展可预测组织形貌的模拟方法、建立金属增材制造数据库和相关标准等方向进行了展望.

     

  • 图  1  金属增材制造技术的应用领域

    Figure  1.  Applications of metal additive manufacturing technology

    图  2  金属增材制造技术原理示意图

    Figure  2.  Schematic illustrations of three typical metal additive manufacturing technologies

    图  3  金属增材制造过程中多尺度、多物理场耦合过程示意图[43]

    Figure  3.  Schematic illustration of multi-scale and multi-physics processes in metal additive manufacturing[43]

    图  4  金属增材制造中的缺陷

    Figure  4.  Three typical defects in components fabricated by metal additive manufacturing

    图  5  工艺参数对组织形貌的影响

    Figure  5.  Influences of processing parameters on microstructures

    图  6  金属增材制造合金的极限拉伸强度与延展性的Ashby图

    Figure  6.  Ultimate tensile stress vs. elongation of various alloys produced by metal additive manufacturing

    图  7  Fe19Ni5Ti合金的制备、表征与力学性能测试[96]

    Figure  7.  Preparation, characterization and tensile testing of Fe19Ni5Ti alloy[96]

    图  8  金属增材制造技术与高熵合金设计理念相结合[105]

    Figure  8.  Integration of metal additive manufacturing technology and high-entropy-alloy design strategy[105]

    图  9  Zr基非晶合金的制备及其力学性能[113]

    Figure  9.  Preparation and tensile testing of Zr-based metallic glass[113]

    表  1  金属增材制造技术对比[22-28]

    Table  1.   Comparison of three typical metal additive manufacturing technologies[22-28]

    SLMLMDSEBM
    heating sourcelaserlaserelectron beam
    powder feedpowder bedblown powderpowder bed
    environmentargonargonvacuum
    preheating80 °C ~ 300 °C100 °C ~ 250 °C200 °C ~ 1250 °C
    beam spot30 ~ 250 μm660 ~ 900 μm200 ~ 1000 μm
    scan speed10 ~ 2000 mm/s1 ~ 20 mm/s200 ~ 3500 mm/s
    layer thickness20 ~ 100 μm200 ~ 1000 μm50 ~ 200 μm
    advantageshigh-quality surface
    finish high strength
    high building rate
    gradient materials
    low residual stress
    malleability
    disadvantageshigh residual stress
    low building rate
    weak strength
    poor surface finish
    poor surface finish
    high cost
    下载: 导出CSV
  • [1] Pham M, Liu C, Todd I, et al. Damage-tolerant architected materials inspired by crystal microstructure. Nature, 2019, 565: 305-311 doi: 10.1038/s41586-018-0850-3
    [2] Schaedler T, Jacobsen A, Torrents A, et al. Ultralight metallic microlattices. Science, 2011, 334: 962-965 doi: 10.1126/science.1211649
    [3] Dobbelstein H, Thiele M, Gurevich EL, et al. Direct metal deposition of refractory high entropy alloy MoNbTaW. Physics Procedia, 2016, 83: 624-633 doi: 10.1016/j.phpro.2016.08.065
    [4] Dobbelstein H, Gurevich E, George E, et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy. Additive Manufacturing, 2018, 24: 386-390 doi: 10.1016/j.addma.2018.10.008
    [5] Hull WC. Method and apparatus for production of three-dimensional objects by stereolithography. European Patent EPO171069, 1986
    [6] Shamsujjoha M, Agnew S, Fitz-Gerald J, et al. High strength and ductility of additively manufactured 316L stainless steel explained. Metallurgical and Materials Transactions A, 2018, 49: 3011-3027 doi: 10.1007/s11661-018-4607-2
    [7] Liu L, Ding Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Materials Today, 2018, 21: 354-361 doi: 10.1016/j.mattod.2017.11.004
    [8] Park J, Choe J, Kim J, et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Materials Research Letters, 2019, 8: 1-7 doi: 10.1080/21663831.2019.1638844
    [9] Fujieda T, Chen M, Shiratori H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Additive Manufacturing, 2019, 25: 412-420 doi: 10.1016/j.addma.2018.10.023
    [10] Laleh M, Hughes A, Xu W, et al. Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing. Corrosion Science, 2020, 165: 108412 doi: 10.1016/j.corsci.2019.108412
    [11] Chao Q, Cruz V, Thomas S, et al. On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scripta Materialia, 2017, 141: 94-98 doi: 10.1016/j.scriptamat.2017.07.037
    [12] Meng W, Xiaohui Y, Zhang W, et al. Additive manufacturing of a functionally graded material from Inconel625 to Ti6Al4V by laser synchronous preheating. Journal of Materials Processing Technology, 2020, 275: 116368 doi: 10.1016/j.jmatprotec.2019.116368
    [13] Liu M, Takata N, Suzuki A, et al. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting. Journal of Materials Science & Technology, 2020, 36: 106-117 doi: 10.1016/j.jmst.2019.06.015
    [14] Bobbio L, Otis R, Borgonia J, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to invar: Experimental characterization and thermodynamic calculations. Acta Materialia, 2017, 127: 133-142 doi: 10.1016/j.actamat.2016.12.070
    [15] Liu G, Zhang X, Chen X, et al. Additive manufacturing of structural materials. Materials Science and Engineering R-Reports, 2021, 145: 100596 doi: 10.1016/j.mser.2020.100596
    [16] Tepylo N, Huang X, Patnaik P. Laser-based additive manufacturing technologies for aerospace applications. Advanced Engineering Materials, 2019, 21(11): 1900617 doi: 10.1002/adem.201900617
    [17] Vasquez E, Giroux P, Lomello F, et al. Effect of powder characteristics on production of oxide dispersion strengthened Fe-14Cr steel by laser powder bed fusion. Powder Technology, 2020, 360: 998-1005 doi: 10.1016/j.powtec.2019.11.022
    [18] Skrynecki N. Kundenorientierte Optimierung des generativen Strahlschmelzprozesses, https://www.metal-am.com/austrian-conference-highlights-innovations-metal-additive-manufacturing/, 2010
    [19] Vafadar A, Guzzomi F, Rassau A, et al. Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Applied Sciences, 2021, 11(3): 1213 doi: 10.3390/app11031213
    [20] Garot C, Bettega G, Picart C. Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics. Advanced Functional Materials, 2021, 31(5): 2006967 doi: 10.1002/adfm.202006967
    [21] Ni J, Ling H, Zhang S, et al. Three-dimensional printing of metals for biomedical applications. Materials Today Bio., 2019, 3: 100024 doi: 10.1016/j.mtbio.2019.100024
    [22] Barroqueiro B, Andrade-Campos A, Valente R, et al. Metal additive manufacturing cycle in aerospace industry: a comprehensive review. Journal of Manufacturing and Materials Processing, 2019, 3(3): 52 doi: 10.3390/jmmp3030052
    [23] Liu S, Shin Y. Additive manufacturing of Ti6Al4V alloy: A review. Materials & Design, 2019, 164: 107552 doi: 10.1016/j.matdes.2018.107552
    [24] Han C, Fang Q, Shi Y, et al. Recent advances on high-entropy alloys for 3D printing. Advanced Materials, 2020, 32(26): 1903855 doi: 10.1002/adma.201903855
    [25] Yang G, Yang P, Yang K, et al. Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting. International Journal of Refractory Metals & Hard Materials, 2019, 84: 105040 doi: 10.1016/j.ijrmhm.2019.105040
    [26] Guo M, Ye Y, Jiang X, et al. Microstructure, mechanical properties and residual stress of selective laser melted AlSi10Mg. Journal of Materials Engineering and Performance, 2019, 28(11): 6753-6760 doi: 10.1007/s11665-019-04423-2
    [27] Boes J, Rottger A, Mutke C, et al. Microstructure and mechanical properties of X65MoCrWV3-2 cold-work tool steel produced by selective laser melting. Additive Manufacturing, 2018, 23: 170-180 doi: 10.1016/j.addma.2018.08.005
    [28] Zhou L, Chen S, Wei, M, et al. Microstructure and properties of 24CrNiMoY alloy steel prepared by direct laser deposited under different preheating temperatures. Materials Characterization, 2019, 158: 109931 doi: 10.1016/j.matchar.2019.109931
    [29] Sander J, Hufenbach J, Giebeler L, et al. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Materials & Design, 2016, 89: 335-341 doi: 10.1016/j.matdes.2015.09.148
    [30] Lin D, Xu L, Han Y, et al. Structure and mechanical properties of a FeCoCrNi high-entropy alloy fabricated via selective laser melting. Intermetallics, 2020, 127: 106963 doi: 10.1016/j.intermet.2020.106963
    [31] 胡美娟, 吉玲康, 马秋荣等. 激光增材制造技术及现状研究. 石油管材与仪器, 2019, 5: 1-6 (Hu Meijuan, Ji Lingkang, Ma Qiurong, et al. Overview of laser additive manufacturing technology and status. Petroleum Tubular Goods & Instruments, 2019, 5: 1-6 (in Chinese) doi: CNKI:SUN:SYYQ.0.2019-05-002
    [32] Li W, Karnati S, Kriewall C, et al. Fabrication and characterization of a functionally graded material from Ti-6Al-4V to SS316 by laser metal deposition. Additive Manufacturing, 2017, 14: 95-104 doi: 10.1016/j.addma.2016.12.006
    [33] 崔雪, 张松, 张春华等. 高性能梯度功能材料激光增材制造研究现状及展望. 材料工程, 2020, 48(9): 13-23 (Cui Xue, Zhang Song, Zhang Chunhua, et al. Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials. Journal of Materials Engineering, 2020, 48(9): 13-23 (in Chinese) doi: 10.11868/j.issn.1001-4381.2019.001156
    [34] 汤慧萍, 王建, 逯圣路等. 电子束选区熔化成形技术研究进展. 中国材料进展, 2015, 34(3): 225-235 (Tang Huiping, Wang Jian, Lu Shenglu, et al. Research progress in selective electron beam melting. Materials China, 2015, 34(3): 225-235 (in Chinese) doi: 10.7502/j.issn.1674-3962.2015.03.05
    [35] 郭超, 张平平, 林峰. 电子束选区熔化增材制造技术研究进展. 工业技术创新, 2017, 4: 6-14 (Guo Chao, Zhang Pingping, Lin Feng. Research advances of electron beam selective melting additive manufacturing technology. Industrial Technology Innovation, 2017, 4: 6-14 (in Chinese) doi: CNKI:SUN:GYJS.0.2017-04-002
    [36] Sochalski-Kolbus L, Payzant E, Cornwell P, et al. Comparison of residual stresses in inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metallurgical and Materials Transactions A, 2015, 46: 1419-1432 doi: 10.1007/s11661-014-2722-2
    [37] Liu Y, Li S, Wang H, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Materialia, 2016, 113: 56-67 doi: 10.1016/j.actamat.2016.04.029
    [38] Lu W, Zhai W, Wang J, et al. Additive manufacturing of isotropic-grained, high-strength and high-ductility copper alloys. Additive Manufacturing, 2021, 38: 101751 doi: 10.1016/j.addma.2020.101751
    [39] Chen Q, Guillemot G, Gandin C, et al. Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials. Additive Manufacturing, 2017, 16: 124-137 doi: 10.1016/j.addma.2017.02.005
    [40] Azarniya A, Colera X, Mirzaali M, et al. Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. Journal of Alloys and Compounds, 2019, 804: 163-191 doi: 10.1016/j.jallcom.2019.04.255
    [41] Mohammadhosseini A, Masood S, Fraser D, et al. Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Advances in Manufacturing, 2015, 3: 232-243 doi: 10.1007/s40436-015-0119-0
    [42] Martin J, Yahata B, Hundley J, et al. 3D printing of high-strength aluminium alloys. Nature, 2017, 549: 365-369 doi: 10.1038/nature23894
    [43] Panwisawas C, Tang Y, Reed R. Metal 3D printing as a disruptive technology for superalloys. Nature Communications, 2020, 11: 2327 doi: 10.1038/s41467-020-16188-7
    [44] Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Progress in Materials Science, 2021, 117: 100724 doi: 10.1016/j.pmatsci.2020.100724
    [45] Liu Q, Elambasseril J, Sun S, et al. The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting. Advanced Materials Research, 2014, 891: 1519-1524 doi: 10.4028/www.scientific.net/AMR.891-892.1519
    [46] 张凤英, 陈静, 谭华等. 钛合金激光快速成形过程中缺陷形成机理研究. 稀有金属材料与工程, 2007, 36(2): 211-215 (Zhang Fengying, Chen Jing, Tan Hua, et al. Research on forming mechanism of defects in laser rapid formed titanium alloy. Rare Metal Materials and Engineering, 2007, 36(2): 211-215 (in Chinese) doi: 10.3321/j.issn:1002-185x.2007.02.006
    [47] Lu T, Liu C, Li Z, et al. Hot-wire arc additive manufacturing Ti-6.5Al-2Zr-1Mo-1V titanium alloy: Pore characterization, microstructural evolution, and mechanical properties. Journal of Alloys and Compounds, 2020, 817: 153334 doi: 10.1016/j.jallcom.2019.153334
    [48] Wu B, Pan Z, Ding D, et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. Journal of Manufacturing Processes, 2018: 127-139 doi: 10.1016/j.jmapro.2018.08.001
    [49] Carter LN, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Materials Science and Technology, 2016, 32: 657-661 doi: 10.1179/1743284715Y.0000000108
    [50] Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Materials & Design, 2016, 105: 160-170 doi: 10.1016/j.matdes.2016.05.070
    [51] Seede R, Shoukr D, Zhang B, et al. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Materialia, 2020, 186: 199-214 doi: 10.1016/j.actamat.2019.12.037
    [52] Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: a review. Chinese Journal of Mechanical Engineering, 2017, 30: 515-527 doi: 10.1007/s10033-017-0121-5
    [53] Esmaeilizadeh R, Keshavarzkermani A, Ali U, et al. Customizing mechanical properties of additively manufactured Hastelloy X parts by adjusting laser scanning speed. Journal of Alloys and Compounds, 2020, 812: 152097 doi: 10.1016/j.jallcom.2019.152097
    [54] Kaufmann N, Imran M, Wischeropp TM, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Physics Procedia, 2016, 83: 918-926 doi: 10.1016/j.phpro.2016.08.096
    [55] Cunningham R, Nicolas A, Madsen J, et al. Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V. Materials Research Letters, 2017, 5: 516-525 doi: 10.1080/21663831.2017.1340911
    [56] 彭谦, 董世运, 闫世兴等. 激光熔化沉积成形缺陷及其控制方法综述. 材料导报, 2018, 32: 2666-2671 (Peng Qian, Dong Shiyun, Yan Shixing, et al. An overiew of defects in laser melting deposition forming products and the corresponding controlling methods. Materials Reports, 2018, 32: 2666-2671 (in Chinese) doi: 10.11896/j.issn.1005-023X.2018.15.019
    [57] Gong H, Rafi K, Gu H, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 2014, 1: 87-98 doi: 10.1016/j.addma.2014.08.002
    [58] Zhao C, Parab ND, Li XX, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science, 2020, 370: 1080-1086 doi: 10.1126/science.abd1587
    [59] Wang J, Cui Y, Liu C, et al. Understanding internal defects in Mo fabricated by wire arc additive manufacturing through 3D computed tomography. Journal of Alloys and Compounds, 2020, 840: 155753 doi: 10.1016/j.jallcom.2020.155753
    [60] Bram M, Bitzer M, Buchkremer HP, et al. Reproducibility study of NiTi parts made by metal injection molding. Journal of Materials Engineering and Performance, 2012, 21: 2701-2712 doi: 10.1007/s11665-012-0264-6
    [61] Zhong C, Biermann T, Gasser A, et al. Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition. Journal of Laser Applications, 2015, 27(4): 042003 doi: 10.2351/1.4923335
    [62] Gu D, Hagedorn YC, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Materialia, 2012, 60: 3849-3860 doi: 10.1016/j.actamat.2012.04.006
    [63] Lian Y, Gan Z, Yu C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing. Materials & Design, 2019, 169: 107672 doi: 10.1016/j.matdes.2019.107672
    [64] Kempen K, Vrancken B, Buls S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061026 doi: 10.1115/1.4028513
    [65] Shim DS, Baek GY, Lee EM. Effect of substrate preheating by induction heater on direct energy deposition of AISI M4 powder. Materials Science and Engineering A, 2017, 682: 550-562 doi: 10.1016/j.msea.2016.11.029
    [66] Caprio L, Demir A, Chiari G, et al. Defect-free laser powder bed fusion of Ti-48Al-2Cr-2Nb with a high temperature inductive preheating system. Journal of Physics-Photonics, 2020, 2(2): 024001 doi: 10.1088/2515-7647/ab7080
    [67] Wang J, Li L, Tao W. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition. Optics and Laser Technology, 2016, 82: 170-182 doi: 10.1016/j.optlastec.2016.03.008
    [68] Li K, Wang D, Xing L, et al. Crack suppression in additively manufactured tungsten by introducing secondary-phase nanoparticles into the matrix. International Journal of Refractory Metals & Hard Materials, 2019, 79: 158-163 doi: 10.1016/j.ijrmhm.2018.11.013
    [69] Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. Journal of Materials Processing Technology, 2017, 249: 255-263 doi: 10.1016/j.jmatprotec.2017.05.042
    [70] Song B, Dong SJ, Zhang BC, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials & Design, 2012, 35: 120-125 doi: 10.1016/j.matdes.2011.09.051
    [71] Zhou R, Liu Y, Zhou C, et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting. Intermetallics, 2018, 94: 165-171 doi: 10.1016/j.intermet.2018.01.002
    [72] Parimi LL, Ravi GA, Clark D, et al. Microstructural and texture development in direct laser fabricated IN718. Materials Characterization, 2014, 89: 102-111 doi: 10.1016/j.matchar.2013.12.012
    [73] Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties. Journal of Alloys and Compounds, 2016, 688: 626-636 doi: 10.1016/j.jallcom.2016.07.206
    [74] Wang X, Chou K. EBSD study of beam speed effects on Ti-6Al-4V alloy by powder bed electron beam additive manufacturing. Journal of Alloys and Compounds, 2018, 748: 236-244 doi: 10.1016/j.jallcom.2018.03.173
    [75] Jia H, Sun H, Wang H, et al. Scanning strategy in selective laser melting (SLM): A review. The International Journal of Advanced Manufacturing Technology, 2021, 113: 2413-2435 doi: 10.1007/s00170-021-06810-3
    [76] Liu C, Tong J, Jiang M, et al. Effect of scanning strategy on microstructure and mechanical properties of selective laser melted reduced activation ferritic/martensitic steel. Materials Science and Engineering:A, 2019, 766: 138364 doi: 10.1016/j.msea.2019.138364
    [77] Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia, 2010, 58: 3303-3312 doi: 10.1016/j.actamat.2010.02.004
    [78] Vrancken B, Thijs L, Kruth JP, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. Journal of Alloys and Compounds, 2012, 541: 177-185 doi: 10.1016/j.jallcom.2012.07.022
    [79] Liu S, Shin Y. Simulation and experimental studies on microstructure evolution of resolidified dendritic TiC in laser direct deposited Ti-TiC composite. Materials & Design, 2018, 159: 212-223 doi: 10.1016/j.matdes.2018.08.053
    [80] Morettini G, Razavi S, Zucca G. Effects of build orientation on fatigue behavior of Ti-6Al-4V as-built specimens produced by direct metal laser sintering. Procedia Structural Integrity, 2019, 24: 349-359 doi: 10.1016/j.prostr.2020.02.032
    [81] Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting. Additive Manufacturing, 2020, 34: 101378 doi: 10.1016/j.addma.2020.101378
    [82] Wang Z, Lin X, Kang N, et al. Making selective-laser-melted high-strength Al-Mg-Sc-Zr alloy tough via ultrafine and heterogeneous microstructure. Scripta Materialia, 2021, 203: 114052 doi: 10.1016/j.scriptamat.2021.114052
    [83] Jia Q, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms. Acta Materialia, 2019, 171: 108-118 doi: 10.1016/j.actamat.2019.04.014
    [84] Pei C, Shi D, Yuan H, et al. Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718. Materials Science and Engineering: A, 2019, 759: 278-287 doi: 10.1016/j.msea.2019.05.007
    [85] Cao G, Sun T, Wang C, et al. Investigations of γ’, γ” and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting. Materials Characterization, 2018, 136: 398-406 doi: 10.1016/j.matchar.2018.01.006
    [86] Hosseini E, Popovich V. A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing, 2019, 30: 100877 doi: 10.1016/j.addma.2019.100877
    [87] Jelis E, Hespos M, Ravindra N. Process evaluation of AISI 4340 steel manufactured by laser powder bed fusion. Journal of Materials Engineering and Performance, 2017, 27: 63-71 doi: 10.1007/s11665-017-2989-8
    [88] Dilip J, Ram G, Starr T, et al. Selective laser melting of HY100 steel: process parameters, microstructure and mechanical properties. Additive Manufacturing, 2017, 13: 49-60 doi: 10.1016/j.addma.2016.11.003
    [89] Qiu C, Kindi M, Aladawi A, et al. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Scientific Reports, 2018, 8: 7785 doi: 10.1038/s41598-018-26136-7
    [90] Kamikawa N, Huang X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Materialia, 2009, 57: 4198-4208 doi: 10.1016/j.actamat.2009.05.017
    [91] Zhang L, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scripta Materialia, 2011, 65: 21-24 doi: 10.1016/j.scriptamat.2011.03.024
    [92] Wang Y, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Materials, 2018, 17: 63-71 doi: 10.1038/nmat5021
    [93] Haghdadi N, Laleh M, Moyle M, et al. Additive manufacturing of steels: a review of achievements and challenges. Journal of Materials Science, 2021, 56: 64-107 doi: 10.1007/s10853-020-05109-0
    [94] Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: a review of their microstructure and properties. Materials Science and Engineering A, 2020, 772: 138633 doi: 10.1016/j.msea.2019.138633
    [95] Suryawanshi J, Prashanth KG, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel. Materials Science and Engineering A, 2017, 696: 113-121 doi: 10.1016/j.msea.2017.04.058
    [96] Kurnsteiner P, Wilms M, Weisheit A, et al. High-strength Damascus steel by additive manufacturing. Nature, 2020, 582: 515-519 doi: 10.1038/s41586-020-2409-3
    [97] Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6: 299-303 doi: 10.1002/adem.200300567
    [98] Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, 375: 213-218 doi: 10.1016/j.msea.2003.10.257
    [99] 李建国, 黄瑞瑞, 张倩等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020, 52(2): 333-359 (Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechnical properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359 (in Chinese) doi: 10.6052/0459-1879-20-009
    [100] Zhang Q, Huang R, Zhang X, et al. Deformation mechanisms and remarkable strain hardening in single-crystalline high-entropy-alloy micropillars/nanopillars. Nano Letters, 2021, 21(8): 3671-3679 doi: 10.1021/acs.nanolett.1c00444
    [101] Zhang Y, Zuo T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61: 1-93 doi: 10.1016/j.pmatsci.2013.10.001
    [102] Zhang H, He Y, Pan Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scripta Materialia, 2013, 69: 342-345 doi: 10.1016/j.scriptamat.2013.05.020
    [103] Chuang MH, Tsai MH, Wang WR, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 2011, 59: 6308-6317 doi: 10.1016/j.actamat.2011.06.041
    [104] Jin K, Lu C, Wang LM, et al. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Materialia, 2016, 119: 65-70 doi: 10.1016/j.scriptamat.2016.03.030
    [105] Moghaddam AO, Shaburova N, Samodurova M, et al. Additive manufacturing of high entropy alloys: A practical review. Journal of Materials Science & Technology, 2021, 77: 131-162 doi: 10.1016/j.jmst.2020.11.029
    [106] Dobbelstein H, Gurevich E, George E, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Additive Manufacturing, 2019, 25: 252-262 doi: 10.1016/j.addma.2018.10.042
    [107] Li B, Qian B, Xu Y, et al. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Materials Letters, 2019, 252: 88-91 doi: 10.1016/j.matlet.2019.05.108
    [108] Chen S, Tong Y, Liaw P. Additive manufacturing of high-entropy alloys: A review. Entropy, 2018, 20(12): 937 doi: 10.3390/e20120937
    [109] Wang W, Wang R, Li F, et al. Elastic constants and their pressure dependence of Zr41Ti14Cu12.5Ni9Be22.5C1 bulk metallic glass. Applied Physics Letters, 1999, 74: 1803-1805 doi: 10.1063/1.123091
    [110] Stalmashonak A, Abdolvand A, Seifert G. Metal-glass nanocomposite for optical storage of information. Applied Physics Letters, 2011, 99(20): 201904 doi: 10.1063/1.3660740
    [111] Makino A, Men H, Kubota T, et al. New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9T and excellent magnetic softness. Journal of Applied Physics, 2009, 105(7): 308 doi: 10.1063/1.3058624
    [112] Zhang C, Ouyang D, Pauly S, et al. 3D printing of bulk metallic glasses. Materials Science and Engineering: Reports, 2021, 145: 100625 doi: 10.1016/j.mser.2021.100625
    [113] Lu Y, Su S, Zhang S, et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility. Acta Materialia, 2021, 206: 116632 doi: 10.1016/j.actamat.2021.116632
    [114] Li N, Zhang J, Xing W, et al. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Materials & Design, 2018, 143: 285-296 doi: 10.1016/j.matdes.2018.01.061
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1446
  • HTML全文浏览量:  559
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 录用日期:  2021-10-19
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2021-12-18

目录

    /

    返回文章
    返回