REVIEW OF ENERGY MANAGEMENT CIRCUITS FOR PIEZOELECTRIC VIBRATION ENERGY HARVESTERS
-
摘要: 随着物联网(internet of things, IoT)技术的高速发展, 传统的电池供电方式已经不能满足其供电需求. 利用压电能量俘获技术将机械能转换为电能, 可为IoT提供持久的电能, 具有广阔的应用前景. 本文在讨论压电振动俘能器的电学特性基础上, 全面总结了面向压电振动俘能器的电能管理电路的最新研究成果. 电能管理电路通常由AC-DC变换和DC-DC开关变换器(包括控制算法)两部分组成, 前者用于将压电振动俘能器输出的交流电转变为直流电, 后者用于提高能量俘获效率. 首先, 针对AC-DC变换, 分析了全桥整流器、电压倍增器、同步开关电感电路和同步开关电容电路的工作原理和优缺点. 接着, 重点讨论了用于压电振动俘能器的典型开关变换器电路, 包括电感式、全电容式和变压器式DC-DC开关变换器以及AC-DC开关变换器, 分析了它们的特点和适用场合. 最后, 针对压电振动俘能器的特点, 分析了实现最大能量俘获的几种典型控制算法, 包括最大功率点跟踪、阻抗匹配和同步电荷提取控制算法. 本文通过对面向压电振动俘能器的电能管理电路的全面分析和综述, 揭示了该领域目前存在的瓶颈问题, 并展望了其未来发展方向, 对压电能量俘获自供电系统的研究和开发具有重要的参考价值.Abstract: With the rapid developments of internet of things (IoT) technology, the traditional battery-based power supplies cannot meet its requirements of power supply. Using a piezoelectric energy harvesting technology which converts the mechanical energy into electrical energy, can provide a stable and long-lasting power supply for IoTs, and has wide application prospects. Based on the discussion of the electrical characteristics of piezoelectric vibration energy harvester, this paper comprehensively summarizes state-of-the-art energy management circuits for piezoelectric vibration energy harvesters. The energy management circuits are usually composed of an AC-DC converter and a DC-DC switching converter (including the control algorithm of converters). The former is used to convert the AC voltage from the piezoelectric vibration energy harvester into DC voltage, and the latter is used to improve the efficiency of energy harvesting. Firstly, for AC-DC converters, the working principles and characteristics of full bridge rectifiers, voltage doublers, synchronized switch harvesting on inductors (SSHI) and synchronized switch harvesting on capacitors (SSHC) are analyzed. Then, the typical switching converters for piezoelectric energy harvesting are discussed, including inductor-based/ capacitor-based/ and transformer-based DC-DC switching converters and inductor-based AC-DC switching converters, besides, their characteristics and applications are analyzed. Finally, according to the characteristics of piezoelectric energy harvester, several typical control algorithms for maximum energy harvesting are analyzed, including maximum power point tracking, impedance matching and synchronous electric charge extraction (SECE). Through the comprehensive analysis and summary of the energy management circuits for the piezoelectric vibration energy harvesters, this paper reveals its bottleneck problems and future development trends, it has important reference values for the research and development of the self-powered piezoelectric energy harvesting systems.
-
表 1 AD-DC变换技术对比
Table 1. Comparison of AD-DC conversion
Method Advantages Disadvantages full bridge rectifier strong adaptability low efficiency P-SSHI highest efficiency only suit for weak coupling;
large sizeS-SSHI higher efficiency the same as above;
limited output voltageSSHC high efficiency;
small sizelimited input energy 表 2 开关变换器的性能比较
Table 2. Comparison of switching converters
Converter Advantages Disadvantages inductor-based strong adaptability;
high efficiencylarge size;
limited output powercapacitor- based small size;
high efficiencylimited output power;
limited input voltagetransformer- based large range of input
voltage;
large output powerlargest size;
highest efficiencyAC-DC low start-up voltage;
less MosFetsnegative voltage power supply;
complex control law表 3 控制算法的性能对比
Table 3. Comparison of control strategy
Control strategy Advantages Disadvantages MPPT strong portability complex circuit impedance matching simple circuit;
low costpoor flexibility;
efficiency changing with ωSECE high efficiency peak voltage detection difficulty -
[1] Huang D, Chen J, Zhou S, et al. Response regimes of nonlinear energy harvesters with a resistor-inductor resonant circuit by complexification-averaging method. Science China Technological Sciences. 2021, 64(6): 1212-1227 [2] Lallart M, Zhou S, Yang Z, et al. Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters. Applied Energy. 2020, 266: 114516 [3] Yan B, Zhou S, Litak G. Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement. International Journal of Bifurcation and Chaos. 2018, 28(7): 1850092 [4] 卢一铭, 曹东兴, 申永军等. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究. 力学学报. 2021, 53(4): 1114-1123Lu Yiming, Cao Dongxing, Shen Yongjun, et al. Study on the defect state band gap and energy trapping characteristics of local resonance phononic crystal plates. Chinese Journal of Theoretical and Applied Mechani, 2021, 53(4): 1114-1123 (in Chinese) [5] 曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报. 2019, 51(4): 1148-1155Cao Dongxing, Ma Hongbo, Zhang Wei. Analysis of energy capture characteristics of flow-induced vibration of a piezoelectric cantilever beam with magnet. Chinese Journal of Theoretical and Applied Mechani, 2019, 51(4): 1148-1155 (in Chinese) [6] 陈怡, 葛羽嘉, 南余荣. 面向能量收集的电源技术综述. 电子技术应用, 2016, 42(10): 33-36+39 (Chen Yi, Ge Yujia, Nan Yurong. Overview of power supply technology for energy harvesting. Application of Electronic Technology, 2016, 42(10): 33-36+39 (in Chinese) [7] 李金田, 文玉梅. 压电式振动能量采集电源管理电路分析. 电源技术, 2012, 36(4): 606-610 (Li Jintian, Wen Yumei. Analysis of piezoelectric vibration energy harvesting power management circuit. Power Technology, 2012, 36(4): 606-610 (in Chinese) doi: 10.3969/j.issn.1002-087X.2012.04.047 [8] Richelli A, Colalongo L, Kovacs-Vajna Z. A review of DC/DC converters for ultra low voltage energy harvesting. Journal of Low Power Electronics, 2016, 12(2): 138-149 doi: 10.1166/jolpe.2016.1427 [9] Newell D, Duffy M. Review of power conversion and energy management for low-power, low-voltage energy harvesting powered wireless sensors. IEEE Transactions on Power Electronics, 2019, 34(10): 9794-9805 doi: 10.1109/TPEL.2019.2894465 [10] Shi G, Xia Y, Xia H, et al. An efficient power management circuit based on quasi maximum power point tracking with bidirectional intermittent adjustment for vibration energy harvesting. IEEE Transactions on Power Electronics, 2019, 34(10): 9671-9685 doi: 10.1109/TPEL.2019.2892457 [11] 朱波. 基于压电材料的环境振动能量采集. [硕士论文]. 南京: 南京航空航天大学, 2013Zhu Bo. Environmental vibration energy harvesting based on piezoelectric materials. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese) [12] Williams CB, Yates RB. Analysis of a micro-electric generator for microsystems. Sensors & Actuators: A Physical, 1996, 52(1): 8-11 [13] Adrien B, Abdelmjid B, Elie L, et al. Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(4): 673-684 doi: 10.1109/TUFFC.2006.1611027 [14] Elvin NG. A general equivalent circuit model for piezoelectric generators. Journal of Intelligent Material Systems and Structures, 2009, 20(1): 3-9 doi: 10.1177/1045389X08089957 [15] Shareef A, Goh WL, Narasimalu S, et al. A rectifier-less AC–DC interface circuit for ambient energy harvesting from low-voltage piezoelectric transducer array. IEEE Transactions on Power Electronics, 2019, 34(2): 1446-1457 doi: 10.1109/TPEL.2018.2831714 [16] Musleh AM, Almobaied M. Sliding mode control of AC/DC sbridgeless converter using piezoelectric energy harvesting sytem. 2021 International Conference on Electric Power Engineering – Palestine, USA: IEEE, 2021, 1-7 [17] Tang Y, Khaligh A. A multiinput bridgeless resonant AC-DC converter for electromagnetic energy harvesting. IEEE Transactions on Power Electronics, 2016, 31(3): 2254-2263 [18] Kwon D, Rincon-Mora GA. A 2 μm bicmos rectifier-free AC–DC piezoelectric energy harvester-charger IC. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4(6): 400-409 doi: 10.1109/TBCAS.2010.2077288 [19] Sujapradeepa M, Asis AAC, Rqjan ES. Performance evaluation of a direct AC-DC boost converter for piezo-electric energy harvesting system//2018 International Conference on Current Trends towards Converging Technologies, Coimbatore, India, 2018-3-1-3. USA: IEEE, 2018 [20] Edla M, Lim YY, Mikio D, et al. A single-stage rectifier-less boost converter circuit for piezoelectric energy harvesting systems. IEEE Transactions on Energy Conversion, 2021, 99: 1 doi: 10.1109/TEC.2021.3103879 [21] Ramadass YK, Chandrakasan AP. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE Journal of Solid-State Circuits, 2010, 45(1): 189-204 doi: 10.1109/JSSC.2009.2034442 [22] Huang D, Zhou S, Litak G. Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit. Nonlinear Dynamics, 2019, 97: 663-677 doi: 10.1007/s11071-019-05005-6 [23] Du S, Seshia AA. An inductorless bias-flip rectifier for piezoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2746-2757 doi: 10.1109/JSSC.2017.2725959 [24] Shu YC, Lien IC. Analysis of power output for piezoelectric energy harvesting systems. Smart Materials & Structures, 2006, 15(6): 1499 [25] Do X, Nguyen H, Han S, et al. A self-powered high-efficiency rectifier with automatic resetting of transducer capacitance in piezoelectric energy harvesting systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(3): 444-453 doi: 10.1109/TVLSI.2014.2312532 [26] Wu L, Do X, Lee S, et al. A self-powered and optimal SSHI circuit integrated with an active rectifier for piezoelectric energy harvesting. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(3): 537-549 doi: 10.1109/TCSI.2016.2608999 [27] Nielsen-Lönn M, Harikumar P, Wikner JJ, et al. Design of efficient CMOS rectifiers for integrated piezo-MEMS energy-harvesting power management systems//2015 European Conference on Circuit Theory and Design, Trondheim, Norway, 2015-8-24-26. USA: IEEE, 2015 [28] Chang RCH, Chen WC, Liu L, et al. An AC–DC rectifier with active and non-overlapping control for piezoelectric vibration energy harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(6): 969-973 doi: 10.1109/TCSII.2019.2927167 [29] Peters C, Handwerker J, Maurath D, et al. A sub-500 mV highly efficient active rectifier for energy harvesting applications. IEEE Transactions on Circuits & Systems Regular Papers, 2011, 58(7): 1542-1550 [30] Le TT, Han J, von Jouanne A, et al. Piezoelectric micro-power generation interface circuits. IEEE Journal of Solid-State Circuits, 2006, 41(6): 1411-1420 doi: 10.1109/JSSC.2006.874286 [31] Guo S, Lee H. An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants. IEEE Journal of Solid-State Circuits, 2009, 44(6): 1796-1804 doi: 10.1109/JSSC.2009.2020195 [32] Sun Y, Hieu NH, Jeong C, et al. An integrated high-performance active rectifier for piezoelectric vibration energy harvesting systems. IEEE Transactions on Power Electronics, 2012, 27(2): 623-627 doi: 10.1109/TPEL.2011.2162078 [33] Eguchi K, Shibata A, Shafiee Q, et al. An inductor-less AC/DC converter using a bipolar cockcroft-walton multilier and a cross-coupled charge pump//2020 3rd International Conference on Power and Energy Applications, Busan, Korea (South), 2020-10-9-11. USA. IEEE, 2020. 63-67. [34] Misra D, Das G, Das D. An IoT based wireless energy harvesting using efficient voltage doubler stages in a RF to DC converter//2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India. USA: IEEE, 2018 [35] Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(4): 584-595 doi: 10.1109/TUFFC.2005.1428041 [36] Li S, Roy A, Calhoun BH. A piezoelectric energy-harvesting system with parallel-SSHI rectifier and integrated maximum-power-point tracking. IEEE Solid-State Circuits Letters, 2019, 2(12): 301-304 doi: 10.1109/LSSC.2019.2951394 [37] Kara I, Becermis M, Kamar MAA, et al. A 70-to-2 V triboelectric energy harvesting system utilizing parallel-SSHI rectifier and DC-DC converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(1): 210-223 doi: 10.1109/TCSI.2020.3025468 [38] Wu L, Kang W, Xie M, et al. A self-powered multi-input bridgeless series-SSHI circuit for piezoelectric energy harvesting//2021 IEEE International Symposium on Circuits and Systems, Daegu, Korea, 2021-5-22-28. USA: IEEE, 2021 [39] Fang S, Xia H, Xia Y, et al. An efficient piezoelectric energy harvesting circuit with series-SSHI rectifier and FNOV-MPPT control technique. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7146-7155 [40] Lien IC, Shu YC, Wu WJ, et al. Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting. Smart Materials and Structures, 2010, 19: 125009 doi: 10.1088/0964-1726/19/12/125009 [41] Dallago E, Danioni A, Marchesi M, et al. A self-powered electronic Interface for electromagnetic energy harvester. IEEE Transactions on Power Electronics, 2011, 26(11): 3174-3182 doi: 10.1109/TPEL.2011.2146277 [42] Xi S, Li W, Guo J, et al. A self-powered piezoelectric energy harvesting interface circuit based on adaptive SSHI with fully integrated switch control//2020 IEEE International Symposium on Circuits and Systems, Seville, Spain, 2020-10-12-14. USA: IEEE, 2020 [43] Eltamaly AM, Addoweesh KE. A novel self-power SSHI circuit for piezoelectric energy harvester. IEEE Transactions on Power Electronics, 2017, 32(10): 7663-7673 doi: 10.1109/TPEL.2016.2636903 [44] Hsu HH, Yang CY, Wang DA. A high-efficiency parallel-SSHI rectifier for piezoelectric energy harvesting//2020 International SoC Design Conference ,Yeosu, Korea, 2021: 2254-2263 [45] Shen H, Qiu J, Ji H, et al. A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources. Sensors & Actuators: A Physical, 2010, 161(1): 245-255 [46] Wu L, Ha DS. A self-powered piezoelectric energy harvesting circuit with an optimal flipping time SSHI and maximum power point tracking. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(10): 1758-1762 doi: 10.1109/TCSII.2019.2924963 [47] Du S, Seshia AA. A fully integrated split-electrode synchronized-switch-harvesting-on-capacitors (SE-SSHC) rectifier for piezoelectric energy harvesting with between 358% and 821% power-extraction enhancement//2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018: 152-154 [48] Xia H, Xia Y, Shi G, et al. A self-powered S-SSHI and SECE hybrid rectifier for PE energy harvesters: analysis and experiment. IEEE Transactions on Power Electronics, 2021, 36(2): 1680-1692 doi: 10.1109/TPEL.2020.3007694 [49] Sujapradeepa M, Asis AAC, Edwardrqjan S. Performance evaluation of a direct AC-DC boost converter for piezo-electric energy harvesting system//2018 International Conference on Current Trends towards Converging Technologies Coimbatore, India, 2018-3-1-3. USA: IEEE, 2018 [50] Chen N, Wei T, Ha DS, et al. Alternating resistive impedance matching for an impact-type microwind piezoelectric energy harvester. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7374-7382 doi: 10.1109/TIE.2018.2793269 [51] Wang Y, Yin Y, Zhang R, et al. A fully-integrated kinetic energy harvesting circuit with a transposed hybrid series-parallel SC DC-DC//2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2019: 33-34 [52] Chen Z, Law M, Mak P, et al. Fully integrated inductor-less flipping-capacitor rectifier for piezoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 2017, 52(12): 3168-3180 doi: 10.1109/JSSC.2017.2750329 [53] Chen Z, Jiang Y, Law M, et al. 27.3 A piezoelectric energy-harvesting interface using split-phase flipping-capacitor rectifier and capacitor reuse multiple-VCR SC DC-DC achieving 9.3 × energy-extraction improvement//2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019-2-17-21. USA: IEEE, 2019: 424-426 [54] Lee H, Jang E, Saif H, et al. A sub-nw fully integrated switched-capacitor energy harvester for implantable applications//2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 2018-9-3-6. USA: IEEE, 2018: 50-53 [55] Intaschi L, Bruschi P, Iannaccone G, et al. A 220-mV input, 8.6 step-up voltage conversion ratio, 10.45-μW output power, fully integrated switched-capacitor converter for energy harvesting//2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2017-4-30-5-3. USA: IEEE, 2017: 1-4 [56] Chen Z, Law M, Mak P, et al. Piezoelectric energy-harvesting interface using split-phase flipping-capacitor rectifier with capacitor reuse for input power adaptation. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2106-2117 doi: 10.1109/JSSC.2020.2989873 [57] Teh Y, Mok PKT. Design of transformer-based boost converter for high internal resistance energy harvesting sources with 21 mV self-startup voltage and 74% power efficiency. IEEE Journal of Solid-State Circuits, 2014, 49(11): 2694-2704 doi: 10.1109/JSSC.2014.2354645 [58] 周天烁, 龚立娇, 赵春明等. 基于耦合电感的压电能量采集电路设计与仿真. 压电与声光, 2020, 42(5): 729-734 (Zhou Tianshuo, Gong Lijiao, Zhao Chunming, et al. Design and simulation of piezoelectric energy harvesting circuit based on coupled inductance. Piezoelectric and Acousto-Optic, 2020, 42(5): 729-734 (in Chinese) [59] Teh Y, Mok PKT. A piezoelectric energy harvesting interface circuit using one-shot pulse transformer boost converter based on water bucket fountain strategy//2014 IEEE International Symposium on Circuits and Systems, Melbourne, VIC, Australia, 2014-6-1-5. USA: IEEE, 2014: 1993-1996 [60] Kong N, Ha DS. Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 2012, 27(5): 2298-2308 doi: 10.1109/TPEL.2011.2172960 [61] Dayal R, Dwari S, Parsa L. Design and implementation of a direct AC−DC boost converter for low-voltage energy harvesting. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2387-2396 doi: 10.1109/TIE.2010.2069074 [62] Wang H, Tang Y, Khaligh A. A bridgeless boost rectifier for low-voltage energy harvesting applications. IEEE Transactions on Power Electronics, 2013, 28(11): 5206-5214 doi: 10.1109/TPEL.2013.2242903 [63] Xu Y, Ha D S, Xu M. Energy harvesting circuit with input matching in boundary conduction mode for electromagnetic generators//2017 IEEE International Symposium on Circuits and Systems, Baltimore, MD, USA, 2017-5-28-31. USA: IEEE, 2017: 1-4 [64] Tang Y, Khaligh A. Miniaturized bridgeless high-frequency resonant AC−DC step-up/step-down converters. IEEE Transactions on Power Electronics, 2014, 29(12): 6518-6533 doi: 10.1109/TPEL.2014.2302575 [65] Chew ZJ, Zhu M. Adaptive maximum power point finding using direct VOC/2 tracking method with microwatt power consumption for energy harvesting. IEEE Transactions on Power Electronics, 2018, 33(9): 8164-8173 doi: 10.1109/TPEL.2017.2774102 [66] Chamanian S, Muhtaroğlu A, Külah H. A self-adapting synchronized-switch interface circuit for piezoelectric energy harvesters. IEEE Transactions on Power Electronics, 2020, 35(1): 901-912 doi: 10.1109/TPEL.2019.2910410 [67] Wang X, Xia Y, Shi G, et al. A novel MPPT technique based on the envelope extraction implemented with passive components for piezoelectric energy harvesting. IEEE Transactions on Power Electronics, 2021, 36(11): 12685-12693 doi: 10.1109/TPEL.2021.3077040 [68] Fan S, Wei R, Zhao L, et al. An ultralow quiescent current power management system with maximum power point tracking (MPPT) for batteryless wireless sensor applications. IEEE Transactions on Power Electronics, 2018, 33(9): 7326-7337 doi: 10.1109/TPEL.2017.2769708 [69] Balato M, Costanzo L, Schiavo AL, et al. Optimization of both perturb & observe and open circuit voltage MPPT techniques for resonant piezoelectric vibration harvesters feeding bridge rectifiers. Sensors and Actuators: A Physical, 2018: 278 [70] Costanzo L, Schiavo AL, Vitelli M. Active interface for piezoelectric harvesters based on multi-variable maximum power point tracking. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(7): 2503-2515 doi: 10.1109/TCSI.2020.2977495 [71] Yao M, Li J, Niu Y. Adaptive impedance matching for power management circuit for a piezoelectric energy harvester on the bridge. Sensors and Actuators A Physical, 2021, 331(11): 112986 [72] Chen N, Jung HJ, Jabbar H, et al. A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit. Sensors & Actuators: A Physical, 2017, 254: 134-144 [73] 罗志春, 李平, 王国达等. 超低启动阈值自供电SECE电源管理电路. 传感技术学报, 2021, 34(2): 150-156 (Luo Zhichun, Li Ping, Wang Guoda, et al. Ultra-low startup threshold self-powered SECE power management circuit. Journal of Sensor Technology, 2021, 34(2): 150-156 (in Chinese) doi: 10.3969/j.issn.1004-1699.2021.02.002 [74] Wang X, Xia Y, Du Y, et al. Multi-input SECE based on buck structure for piezoelectric energy harvesting. IEEE Transactions on Power Electronics, 2021, 36(4): 3638-3642 doi: 10.1109/TPEL.2020.3022424 [75] Meng M, Wang D, Truong BD, et al. A multi-beam shared-inductor reconfigurable voltage/SECE mode piezoelectric energy harvesting interface circuit. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(6): 1277-1287 doi: 10.1109/TBCAS.2019.2942261 [76] 杜英斐, 夏银水, 王修登等. 基于同步翻转电荷提取的多压电能量俘获电路. 传感技术学报, 2021, 34(4): 454-462 (Du Yingfei, Xia Yinshui, Wang Xiudeng, et al. Multi-piezoelectric energy capture circuit based on synchronously flipped charge extraction. Journal of Sensor Technology, 2021, 34(4): 454-462 (in Chinese) doi: 10.3969/j.issn.1004-1699.2021.04.005 [77] Wu PH, Lin JT, Lo YC, et al. An SECE array of piezoelectric energy harvesting. Smart Materials and Structures, 2021, 30(4): 045008 doi: 10.1088/1361-665X/abe033 [78] Meng M, Ibrahim A, Xue T, et al. 27.4 Multi-beam shared-inductor reconfigurable voltage/SECE-mode piezoelectric energy harvesting of multi-axial human motion//2019 IEEE International Solid- State Circuits Conference, San Francisco, CA, USA, 2019-2-17-21. USA: IEEE, 2019: 426-428 [79] Morel A, Quelen A, Berlitz CA, et al. Fast-convergence self-adjusting SECE circuit with tunable short-circuit duration exhibiting 368% bandwidth improvement. IEEE Solid-State Circuits Letters, 2020, 3: 222-225 doi: 10.1109/LSSC.2020.3012340 -