EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种压电驱动的三足爬行机器人

高煜斐 周生喜

高煜斐, 周生喜. 一种压电驱动的三足爬行机器人. 力学学报, 2021, 53(12): 1-12 doi: 10.6052/0459-1879-21-430
引用本文: 高煜斐, 周生喜. 一种压电驱动的三足爬行机器人. 力学学报, 2021, 53(12): 1-12 doi: 10.6052/0459-1879-21-430
Gao Yufei, Zhou Shengxi. A piezoelectric-driven three-legged crawling robot. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 1-12 doi: 10.6052/0459-1879-21-430
Citation: Gao Yufei, Zhou Shengxi. A piezoelectric-driven three-legged crawling robot. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 1-12 doi: 10.6052/0459-1879-21-430

一种压电驱动的三足爬行机器人

doi: 10.6052/0459-1879-21-430
基金项目: 国家自然科学基金 (12072267), 国家重点研发计划(2020YFA0711700)和深圳市基础研究(JCYJ20190806153615091)资助项目
详细信息
    作者简介:

    周生喜, 教授, 主要研究方向: 振动能量俘获、压电机器人等. E-mail: zhoushengxi@nwpu.edu.cn

  • 中图分类号: TP242

A PIEZOELECTRIC-DRIVEN THREE-LEGGED CRAWLING ROBOT

  • 摘要: 机器人领域涉及到力学、机械、材料、控制、电子和计算机等多个学科. 其中, 爬行机器人可在极端环境下工作, 进而可有效降低人工作业的危险性并提高工作效率. 因此, 爬行机器人一直是机器人领域的重点研究对象. 压电陶瓷是一种能够将机械能和电能互相转换的新型功能陶瓷材料. 逆压电效应是指当在电介质的极化方向施加电场, 这些电介质就在一定方向上产生机械变形或机械压力, 当外加电场撤去时, 这些变形或应力也随之消失. 本文基于压电陶瓷的逆压电效应设计了一种由3条弯曲变截面梁支撑的一体化三足爬行机器人. 利用理论力学方法对该三足爬行机器人建立整体受力分析方程, 再用哈密顿原理对变截面、变角度梁建立动力学方程, 最终得到了可求解该三足爬行机器人的压电驱动腿固有频率的方程. 设计并制作了三足爬行机器人实物, 通过实验测试了不同弯折角度、不同驱动频率、不同负载、不同电压波形对运动方向及运动速度的影响. 最后利用不对称的驱动电压使三足爬行机器人实现了左转、右转以及不加导轨的近似直线运动, 实现了设计的3个方向的运动, 最后分析了该机器人的能耗问题. 该研究可为微型爬行机器人设计和实验提供参考依据.

     

  • 图  1  机器人行走原理[30]

    Figure  1.  The walking principle of the robot[30]

    图  2  压电驱动的三足爬行机器人实物图

    Figure  2.  The experimental photograph of a piezoelectric-driven three-legged crawling robot

    图  3  整体受力分析示意图

    Figure  3.  Overall force analysis

    图  4  压电驱动腿示意图

    Figure  4.  The diagram of a piezoelectric-driven leg

    图  5  三足爬行机器人腿部俯视图 (单位: mm)

    Figure  5.  Top view of the three-legged crawling robot's one leg (unit: mm)

    图  6  实验装置

    Figure  6.  Experimental setup

    图  7  机器人行走轨道

    Figure  7.  Walking track of the robot

    图  8  机器人自由运动轨迹

    Figure  8.  Free motion trajectory of the robot

    图  9  机器人前行时摩擦系数测量

    Figure  9.  Measurement of the friction coefficient when the robot moves forward

    图  10  机器人后退时摩擦系数测量

    Figure  10.  Measurement of the friction coefficient when the robot moves backward

    图  11  机器人的直线运动速度与频率关系

    Figure  11.  The relationship between the linear motion speed and frequency of the robot

    图  12  机器人在不同运动表面上的速度

    Figure  12.  Speeds of the robot on different moving surfaces

    图  13  压电驱动腿不同弯曲角度对速度的影响

    Figure  13.  Influence of different bending angles of the piezoelectric-driven leg on the speed

    图  14  不同输入波形信号对机器人运动的影响

    Figure  14.  Influence of different input waveform signals on the motion of the robot

    图  15  机器人负载实物图

    Figure  15.  The picture of the robot with the load

    图  16  机器人在负载下的实验速度曲线

    Figure  16.  Experimental speed curves of the robot with different loads

    17  不同负载位置下的机器人

    17.  Robots under different load positions

    图  17  不同负载位置下的机器人 (续)

    Figure  17.  Robots under different load positions (continued)

    图  18  机器人开始行走位置

    Figure  18.  Initial position of the robot

    图  19  机器人结束行走位置

    Figure  19.  Final position of the robot

    表  1  压电片参数

    Table  1.   Parameters of piezoelectric ceramics

    ParameterValue
    PZT-5H size/mm325$ \times $12$ \times $0.13
    Yang's modulus/GPa60
    density/(kg·m−3)7800
    coupling coefficient/(C·N−1)−320×10−10
    下载: 导出CSV

    表  2  机器人参数表

    Table  2.   Parameters of the robot

    ParameterValue
    quality/g3.5
    leg bend angle/(°)73
    total robot size/mm365×34×10
    driving leg size/mm345×12×10
    bending leg/mm310×12×0.2
    下载: 导出CSV
  • [1] 王义节. 工业机器人行业的发展现状及展望. 科学技术创新, 2020, 30(4): 89-90 (Wang Yijie. The development status and prospect of industrial robot industry. Science and Technology Innovation, 2020, 30(4): 89-90 (in Chinese)
    [2] 张春阳. 基于STM32的六足机器人系统设计及模糊PID控制. [硕士论文]. 杭州: 浙江理工大学, 2015

    Zhang Chunyang. STM32-based six-legged robot system design and fuzzy PID control. [Master's thesis]. Hangzhou: Zhejiang University of Technology, 2015 (in Chinese)
    [3] Raibert M, Blankespoor K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot//Proceeding of the 17th World Congress. 2008, 17(1): 10822-10825
    [4] Ding L, Wang R, Feng H, et al. Brief analysis of a BigDog quadruped robot. China Mechanical Engineering, 2012, 23(5): 505-514
    [5] 丁良宏, 王润孝, 冯华山等. 浅析BigDog四足机器人. 中国机械工程, 2012, 23(5): 505-514 (Ding Lianghong, Wang Runxiao, Feng Huashan, et al. A brief analysis of BigDog quad-legged robots. China Mechanical Engineering, 2012, 23(5): 505-514 (in Chinese) doi: 10.3969/j.issn.1004-132X.2012.05.001
    [6] Christensen DL, Hawkes EW, Suresh SA, et al. μTugs: Enabling microrobots to deliver macro forces with controllable adhesives//2015 IEEE International Conference on Robotics and Automation (ICRA), 2015: 4048-4055
    [7] Hawkes EW, Christensen DL, Cutkosky MR. Vertical dry adhesive climbing with a 100 bodyweight payload//2015 IEEE International Conference on Robotics and Automation (ICRA), 2015: 3762-3769
    [8] 王楠, 吴成东, 王明辉等. 可变形灾难救援机器人控制站系统的设计与实现. 机器人, 2011, 33(2): 202-207 (Wang Nan, Wu Chengdong, Wang Minghui, et al. The design and realization of the deformable disaster rescue robot control station system. Robot, 2011, 33(2): 202-207 (in Chinese) doi: 10.3724/SP.J.1218.2011.00202
    [9] 田兴华, 高峰, 陈先宝等. 四足仿生机器人混联腿构型设计及比较. 机械工程学报, 2013, 49(6): 81-88 (Tian Xinghua, Gao Feng, Chen Xianbao, et al. Four-legged bionic robot mixed leg configuration design and comparison. Journal of Mechanical Engineering, 2013, 49(6): 81-88 (in Chinese) doi: 10.3901/JME.2013.06.081
    [10] 沈惠平, 马小蒙, 孟庆梅等. 仿生机器人研究进展及仿生机构研究. 常州大学学报(自然科学版), 2015, 27(1): 1-10 (Shen Huiping, Ma Xiaomeng, Meng Qingmei, et al. Advances in the study of bionic robots and research in bionic institutions. Changzhou University Journal (Natural Science Edition), 2015, 27(1): 1-10 (in Chinese)
    [11] Chen S, Huang K, Chen W, et al. Quattroped: a leg-wheel transformable robot, IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 730-742
    [12] 张力文, 徐齐平, 刘锦阳. 软体尺蠖爬行机器人建模与仿真分析. 上海交通大学学报, 2021, 55(2): 149-160 (Zhang Wen, Xu Qiping, Liu Jinyang. Modeling and simulation analysis of software-footed crawling robots. Journal of Shanghai Jiaotong University, 2021, 55(2): 149-160 (in Chinese))
    [13] 霍前俊, 刘胜, 张远飞等. 3腔道仿生软体爬行机器人设计. 轻工机械, 2021, 39(4): 26-30

    Huo Qianjun, Liu Sheng, Zhang Yuanfei, et al. 3 cavity bionic software crawling robot design, Light Industrial Machinery, 2021, 39 (4): 26-30 (in Chinese)
    [14] 尹铁, 王金鹏, 周伦等. 一种大口径管道内爬行机器人的设计. 机床与液压, 2021, 49(11): 22-25 (Yi Tie, Wang Jinpeng, Zhou Lun, et al. The design of a creeping robot in a large-calibre pipe. Machine and Hydraulics, 2021, 49(11): 22-25 (in Chinese)
    [15] 官文俊, 程震, 张忠强等. 形状记忆合金丝致动软腔体爬行机器人的设计及性能. 机器人: 1-10[2021-08-27](Guan Wenjun, Cheng Zhen, Zhang Zhongqiang, et al. Shape memory alloy silk-driven soft cavity crawling robot design and performance. Robots: 1-10 [2021-08-27](in Chinese))
    [16] 张丽艳, 詹跃明, 郭虎等. 全地形六足仿生机器人的设计与制作. 电子制作, 2020(11): 38-39 + 67 (Zhang Liyan, Zhan Yueming, Guo Hu, et al. Design and production of terrain six-leg bionic robots. Electronic Production, 2020(11): 38-39 + 67 (in Chinese) doi: 10.3969/j.issn.1006-5059.2020.11.014
    [17] Huang DM, Chen JY, Zhou SX, et al. Response regimes of nonlinear energy harvesters with a resistor-inductor resonant circuit by complexification-averaging method. Science China Technological Sciences, 2021, 64: 1212-1227 doi: 10.1007/s11431-020-1780-x
    [18] Fu HL, Mei XT, Daniil Y, et al. Rotational energy harvesting for self-powered sensing, Joule, 2021: 1074-1118
    [19] 张东升, 胥永晓. 一种压电式海浪能量收集器的研究. 南方农机, 2021, 52(14): 154-155-172 (Zhang Dongsheng, Yu Yongxiao. Research on a piezoelectric wave energy collector. Southern Farm Machinery, 2021, 52(14): 154-155-172 (in Chinese) doi: 10.3969/j.issn.1672-3872.2021.14.052
    [20] 李京. 微小型谐振式多足压电机器人设计及试验. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2020

    Li Jing. Design and test of micro-resonant multi-footed piezoelectric robots. [Master's thesis]. Harbin: Harbin University of Technology, 2020 (in Chinese)
    [21] Peng H, Yang J, Lu X, et al. A Lightweight surface milli-walker based on piezoelectric actuation. IEEE Transactions on Industrial Electronics, 2018, 66(10): 7852-7860
    [22] 贺红林, 金家楣, 赵淳生. 一种基于压电驱动的小型移动机器人的研究. 压电与声光. 2006, 28(5): 520-523

    He Honglin, Jin Jiamei, Zhao Chunsheng. A study of a small mobile robot based on piezoelectric drive. Piezoelectric and Acoustic Light. 2006, 28(5): 520-523 (in Chinese)
    [23] 郑龙龙, 李朝东. 压电双晶驱动器驱动八足机器人的研制. 工业控制计算机, 2018, 31(6): 146-147 (Zheng Longlong, Li Chaodong. Piezoelectric dual crystal drive drives the development of eight-legged robots. Industrial Control Computer, 2018, 31(6): 146-147 (in Chinese) doi: 10.3969/j.issn.1001-182X.2018.06.061
    [24] 郑龙龙, 李朝东. 压电仿生八足机器人的研究. 计量与测试技术, 2018, 45(5): 41-44 (Zheng Longlong, Li Chaodong. Research on piezo bionic octal robots. Measurement and Testing Technology, 2018, 45(5): 41-44 (in Chinese)
    [25] 李魁, 徐鉴. 压电谐振驱动三足机器人的平面运动. 动力学与控制学报, 2015, 13(6): 454-461 (Li Kui, Xu Jian. Piezoelectric resonance drives the plane motion of a three-legged robot. Journal of Dynamics and Control, 2015, 13(6): 454-461 (in Chinese) doi: 10.6052/1672-6553-2015-064
    [26] 陈畅, 张卫平, 邹阳等. 压电驱动的六足爬行机器人的设计与制造. 压电与声光, 2018, 40(5): 700-703 (Chen Chang, Zhang Weiping, Zou Yang, et al. The design and manufacture of piezoelectrically driven six-legged crawling robots. Piezoelectric and Acoustic Light, 2018, 40(5): 700-703 (in Chinese) doi: 10.11977/j.issn.1004-2474.2018.05.014
    [27] 李一帆, 张卫平, 邹阳等. 压电式微型仿生六足分节机器人结构设计与加工工艺研究. 机械设计与制造, 2017(S1): 213-216 (Li Yifan, Zhang Weiping, Zou Yang, et al. Piezoelectric micro-bionic six-foot section robot structure design and processing process research. Mechanical Design and Manufacturing, 2017(S1): 213-216 (in Chinese)
    [28] Deng J, Liu Y, Chen W, et al. A XY transporting and nanopositioning piezoelectric robot operated by leg rowing mechanism. IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 207-217 doi: 10.1109/TMECH.2019.2890825
    [29] Liu PK, Wen Z, Sun L. An in-pipe micro robot actuated by piezoelectric bimorghs. Chinese Science Bulletin, 2009, 54(12): 2134-2142
    [30] 蒋振宇, 李伟达, 祝宇虹. 一种谐振式微小型机器人移动机构. 压电与声光, 2010, 32(4): 625-628 (Jiang Zhenyu, Li Weida, Zhu Yuhong. A resonant micro-small robot moving mechanism. Piezoelectric and Acoustic Light, 2010, 32(4): 625-628 (in Chinese) doi: 10.3969/j.issn.1004-2474.2010.04.030
    [31] 刘英想, 闫纪朋, 徐冬梅等. 弯振复合型单足压电驱动器设计. 西安电子科技大学学报, 2017, 44(1): 130-133 (Liu Yingxiang, Yan Jipeng, Xu Dongmei, et al. Bending composite single-foot piezoelectric drive design. Journal of Xi'an University of Electronic Science and Technology, 2017, 44(1): 130-133 (in Chinese)
    [32] Nader Jalili. 基于压电材料的振动控制-从宏观系统到微纳米系统. 赵丹, 刘少刚, 冯立锋译. 北京: 国防工业出版社, 2017: 152-162

    Nader Jalili. Piezoelectric-Based Vibration Control-From Macro to Micro/Nano Scale Systems. Zhao Dan, Liu Shaogang, Feng Lifeng translated. Beijing: National Defense Industry Press, 2017: 152-162 (in Chinese)
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  21
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-28
  • 录用日期:  2021-10-26
  • 网络出版日期:  2021-10-27

目录

    /

    返回文章
    返回