POWDER SCALE MULTIPHYSICS NUMERICAL MODELLING OF LASER DIRECTED ENERGY DEPOSITION
-
摘要: 激光定向能量沉积技术作为一种同轴送粉式金属增材制造技术, 以其制造效率高、成形尺寸大等优势在航空、航天、交通等领域具有广阔的应用前景. 然而, 该技术在金属零件的尺寸精度和形状精度控制方面存在诸如尺寸偏差大、表面不平整等控形问题, 亟需发展高效高精度预测熔覆层成形尺寸形貌的数值模拟方法. 针对该问题, 本文建立了考虑激光-粉末-熔池交互过程的高保真多物理场数值模型. 其中, 采用高斯面热源等效激光光束, 利用拉格朗日质点法求解粉末输送及其与激光交互的过程, 进一步结合有限体积法和流体体积法求解粉末-熔池的交互及其流动凝固过程, 并通过TC17合金单道熔覆层实验结果进行了验证. 基于该模型, 首先预测了不同工艺参数下单道熔覆层形貌尺寸, 并对熔覆层形貌的变化趋势及其内在的物理机理进行了深入分析. 结果表明, 依赖于工艺参数的粉末温度分布和粉末基板能量分配比例对熔池流场和熔覆层尺寸有显著的影响. 本文所建立的数值模型可辅助激光定向能量沉积增材制造技术控形工艺参数优化, 所得结论可为成形件尺寸和形状精度控制提供理论指导.Abstract: Laser-directed energy deposition (L-DED), as a coaxial powder feeding metal additive manufacturing process, has a broad application prospect in the fields such as aerospace and transportation for its' advantages of high deposition rate and fabrication of large parts. However, the L-DED suffers from process defects in the resolution of metal part size and shape, such as significant size deviation and surface unevenness, which requires high efficiency and accurate numerical model to predict the shape and size of the cladding track. In this work, we proposed a high-fidelity multi-physics numerical model that considers the interaction between powders, laser beam, and melt pool. In this model, the laser beam is modeled as a Gauss surface heat source, a Lagrangian particle-based model is used for the powders-laser beam interaction, and then the Lagrangian particle-based model is integrated to finite volume method and volume of fluid to simulate the interaction between powders and melt pool and the corresponding melting and solidification process. The proposed model is validated by the experimental data of single-track TC17 alloy fabricated using L-DED. Based on the validated numerical model, a set of single tracks with different combinations of process parameters are predicted, followed by an in-depth analysis of process parameters' effect on the sizes and shapes of the cladding tracks and the corresponding underlying physical mechanism. It is identified that the process parameters dependent temperature distribution of the injected powders and the ratio of energy absorbed by powders to that by the substrate play an essential role in the velocity field of the melt pool and the size and shape of the cladding track. We expect that the proposed numerical model is a powerful tool to aid the process parameters optimization for the L-DED additive manufacturing process. At the same time, the results of this study can provide theoretical guidance on the shape and size resolution control of the fabricated parts.
-
表 1 工艺参数
Table 1. Process parameters
Parameters Units Value $P$ $ {\rm{kW}} $ 6 $v$ ${\rm{mm} }/\min$ 1000 $ {V_f} $ $ {\text{g}}/{\text{s}} $ 0.33 $ {r_0} $ $ {\rm{cm}} $ 0.3 ${r_{{\rm{focus}}} }$ $ {\rm{cm}} $ 0.2 ${l_{{\rm{focus}}} }$ $ {\rm{cm}} $ 1 ${z_{{\rm{focus}}} }$ $ {\rm{cm}} $ 0.5 表 2 TC17热物性参数
Table 2. Thermal properties of TC17
Properties Units Value $ {T_l} $ $ {\rm{K}} $ 1960 $ {T_s} $ $ {\rm{K}} $ 1770 $\rho $ $ {\rm{g}}/{\rm{c}}{{\rm{m}}^3} $ 4.69 $ k $ $ {\rm{W}}/({\rm{m}} \cdot {\rm{K}}) $ 6.5 $ c $ $ {\rm{J}}/({\rm{kg}} \cdot {\rm{K}}) $ 523 $ \sigma $ $ {\text{N/m}} $ 1.65 $\dfrac{ { {\rm{d} }\sigma } }{ { {\rm{d} }T} }$ $ {\rm{N}}/({\rm{m}} \cdot {\rm{K}}) $ 2.4$ \times {10^{-4}} $ $ \Delta H $ $ {\rm{J}}/{\rm{kg}} $ 3.03$ \times {10^5} $ $ {h_c} $ $ {\rm{W}}/({{\rm{m}}^2} \cdot {\rm{K}}) $ 10 $ \eta $ − 0.3 $ {\eta _p} $ − 0.7 表 4 不同Z向粉末速度工况下熔池模拟结果
Table 4. Simulation results of melt pool for the cases with different powder velocities along Z direction
Powder Z-velocity/(cm·s−1) Width/mm Height/mm Depth/mm Max-velocity/(cm·s−1) Peak temperature/K 200 7 0.81 1 19.12 2690 400 6.75 0.68 1 16.22 2450 800 5.5 0.5 1 14.4 2350 表 5 不同送粉模式下熔池模拟结果
Table 5. Simulation results of the melt pool for the cases with different powder feeding modes
Powder feeding mode Width/mm Height/mm Depth/mm Max-velocity/(cm·s−1) Peak temperature/K single-vertical nozzle 7 0.7 1 25.21 2920 four-lateral nozzles 6.75 0.68 1 16.22 2450 -
[1] 陈嘉伟, 熊飞宇, 黄辰阳等. 金属增材制造数值模拟. 中国科学: 物理学 力学 天文学, 2020, 50(9): 104-128 (Chen Jiawei, Xiong Feiyu, Huang Chenyang, et al. Numerical simulation on metallic additive manufacturing. Scientia Sinica Physica,Mechanica &Astronomica, 2020, 50(9): 104-128 (in Chinese) [2] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题. 航空学报, 2014, 35(10): 2690-2698 (Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698 (in Chinese) [3] Tan H, Shang W, Zhang F, et al. Process mechanisms based on powder flow spatial distribution in direct metal deposition. Journal of Materials Processing Technology, 2018, 254: 361-372 doi: 10.1016/j.jmatprotec.2017.11.026 [4] Gharbi M, Peyre P, Gorny C, et al. Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy. Journal of Materials Processing Technology, 2013, 213(5): 791-800 doi: 10.1016/j.jmatprotec.2012.11.015 [5] Thakkar D, Sahasrabudhe H. Investigating microstructure and defects evolution in laser deposited single-walled Ti6Al4V structures with sharp and non-sharp features. Journal of Manufacturing Processes, 2020, 56: 928-940 doi: 10.1016/j.jmapro.2020.05.052 [6] Wang X, He X, Wang T, et al. Internal pores in DED Ti-6.5Al-2Zr-Mo-V alloy and their influence on crack initiation and fatigue life in the mid-life regime. Additive Manufacturing, 2019, 28: 373-393 doi: 10.1016/j.addma.2019.05.007 [7] Lin J. Concentration mode of the powder stream in coaxial laser cladding. Optics & Laser Technology, 1999, 31(3): 251-257 [8] Balu P, Leggett P, Kovacevic R. Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process. Journal of Materials Processing Technology, 2012, 212(7): 1598-1610 doi: 10.1016/j.jmatprotec.2012.02.020 [9] Zhang H, Zhu L, Xue P. Laser direct metal deposition of variable width thin-walled structures in Inconel 718 alloy by coaxial powder feeding. The International Journal of Advanced Manufacturing Technology, 2020, 108(3): 821-840 doi: 10.1007/s00170-020-05434-3 [10] Zhu G, Li D, Zhang A, et al. The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition. Optics & Laser Technology, 2012, 44(2): 349-356 [11] El Cheikh H, Courant B, Hascoët JY, et al. Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning. Journal of Materials Processing Technology, 2012, 212(9): 1832-1839 doi: 10.1016/j.jmatprotec.2012.03.016 [12] 王予, 黄延禄, 杨永强. 同轴送粉激光定向能量沉积IN718的数值模拟. 中国激光, 2021, 48(6): 185-196 (Wang Yu, Huang Yanlu, Yang Yongqiang. Numerical Simulation on Coaxial Powder Feeding Laser Directional Energy Deposition of IN718. Chinese Journal of Laser, 2021, 48(6): 185-196 (in Chinese) [13] Lee Y, Farson DF. Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing. Journal of Laser Applications, 2016, 28(1): 12006 doi: 10.2351/1.4935711 [14] Knapp GL, Mukherjee T, Zuback JS, et al. Building blocks for a digital twin of additive manufacturing. Acta Materialia, 2017, 135: 390-399 doi: 10.1016/j.actamat.2017.06.039 [15] Lian Y, Gan Z, Yu C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing. Materials & Design, 2019, 169: 107672 [16] Zhao Z, Zhu Q, Yan J. A thermal multi-phase flow model for directed energy deposition processes via a moving signed distance function. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113518 doi: 10.1016/j.cma.2020.113518 [17] Khamidullin BA, Tsivilskiy IV, Gorunov AI, et al. Modeling of the effect of powder parameters on laser cladding using coaxial nozzle. Surface and Coatings Technology, 2019, 364: 430-443 doi: 10.1016/j.surfcoat.2018.12.002 [18] Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. Journal of Applied Physics, 2006, 100(2): 24903 doi: 10.1063/1.2209807 [19] Sun Z, Guo W, Li L. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process. Additive Manufacturing, 2020, 33: 101175 doi: 10.1016/j.addma.2020.101175 [20] 贾文鹏, 陈静, 林鑫等. 激光快速成形过程中粉末与熔池交互作用的数值模拟. 金属学报, 2007(5): 546-552 (Jia Wenpeng, Chen Jing, Lin Xin, et al. Numerical simulation of interaction between metal powder and melting pool during laser rapid forming. Acta Metallurgica Sinica, 2007(5): 546-552 (in Chinese) doi: 10.3321/j.issn:0412-1961.2007.05.018 [21] Wang S, Zhu L, Fuh JYH, et al. Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Optics and Lasers in Engineering, 2020, 127: 105950 doi: 10.1016/j.optlaseng.2019.105950 [22] Wang S, Zhu L, Dun Y, et al. Multi-physics modeling of direct energy deposition process of thin-walled structures: defect analysis. Computational Mechanics, 2021, 67(4): 1229-1242 doi: 10.1007/s00466-021-01992-9 [23] Aggarwal A, Chouhan A, Patel S, et al. Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM–CFD–CA approach. International Journal of Heat and Mass Transfer, 2020, 158: 119989 doi: 10.1016/j.ijheatmasstransfer.2020.119989 [24] Aggarwal A, Patel S, Vinod AR, et al. An integrated Eulerian-Lagrangian-Eulerian investigation of coaxial gas-powder flow and intensified particle-melt interaction in directed energy deposition process. International Journal of Thermal Sciences, 2021, 166: 106963 doi: 10.1016/j.ijthermalsci.2021.106963 [25] Wang H, Liao H, Fan Z, et al. The Hot Optimal Transportation Meshfree (HOTM) method for materials under extreme dynamic thermomechanical conditions. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112958 doi: 10.1016/j.cma.2020.112958 [26] Dao MH, Lou J. Simulations of laser assisted additive manufacturing by smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113491 doi: 10.1016/j.cma.2020.113491 [27] Tan H, Zhang F, Wen R, et al. Experiment study of powder flow feed behavior of laser solid forming. Optics and Lasers in Engineering, 2012, 50(3): 391-398 doi: 10.1016/j.optlaseng.2011.10.017 [28] Lee YS, Nordin M, Babu SS, et al. Influence of fluid convection on weld pool formation in laser cladding. Weld. J, 2014, 93(8): 292-300 [29] Gan Z, Yu G, He X, et al. Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing. International Communications in Heat and Mass Transfer, 2017, 86: 206-214 doi: 10.1016/j.icheatmasstransfer.2017.06.007 [30] Wei HL, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components. Progress in Materials Science, 2021, 116: 100703 doi: 10.1016/j.pmatsci.2020.100703 [31] Liu YG, Li HM, Li MQ. Roles for shot dimension, air pressure and duration in the fabrication of nanocrystalline surface layer in TC17 alloy via high energy shot peening. Journal of Manufacturing Processes, 2020, 56: 562-570 doi: 10.1016/j.jmapro.2020.05.019 -