EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造TC4钛合金的动态力学行为研究

西禹 张强 张欣钥 刘小川 郭亚洲

西禹, 张强, 张欣钥, 刘小川, 郭亚洲. 增材制造TC4钛合金的动态力学行为研究. 力学学报, 2022, 54(2): 425-444 doi: 10.6052/0459-1879-21-418
引用本文: 西禹, 张强, 张欣钥, 刘小川, 郭亚洲. 增材制造TC4钛合金的动态力学行为研究. 力学学报, 2022, 54(2): 425-444 doi: 10.6052/0459-1879-21-418
Xi Yu, Zhang Qiang, Zhang Xinyue, Liu Xiaochuan, Guo Yazhou. Dynamic mechanical behavior of additive manufacturing TC4 alloy. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425-444 doi: 10.6052/0459-1879-21-418
Citation: Xi Yu, Zhang Qiang, Zhang Xinyue, Liu Xiaochuan, Guo Yazhou. Dynamic mechanical behavior of additive manufacturing TC4 alloy. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425-444 doi: 10.6052/0459-1879-21-418

增材制造TC4钛合金的动态力学行为研究

doi: 10.6052/0459-1879-21-418
基金项目: 国家自然科学基金(11922211)和航空基金(20184153030)资助项目
详细信息
    作者简介:

    郭亚洲, 教授, 主要研究方向: 冲击动力学. E-mail:guoyazhou@nwpu.edu.cn

  • 中图分类号: TB31

DYNAMIC MECHANICAL BEHAVIOR OF ADDITIVE MANUFACTURING TC4 ALLOY

  • 摘要: 增材制造TC4钛合金是具有优良的力学性能和工艺性能的金属材料, 在航空航天领域已得到重要应用. 近年来, 在塑性力学的研究中, 探究应力状态对金属材料变形和失效行为的影响得到广泛关注, 然而大部分的研究都是在准静态下完成的, 对于中高应变率下金属材料变形失效的研究较少. 本文从增材制造TC4钛合金的基本力学性能出发, 考虑应力状态和应变率对其变形和失效行为的影响, 采用应力三轴度$ \eta $和罗德角参数$ \overline \theta $表征应力状态, 设计了相应的试样形式和实验方法. 利用电子万能实验机、高速液压伺服实验机以及分离式Hopkinson杆, 结合数字图像相关法分析对材料在不同应变率、不同应力状态下的力学性能进行了测试, 获得其变形和失效特性. 为得到试样内部应力状态历程参数和应变场, 通过ABAQUS进行数值仿真, 得到试样应变最大处的应力状态历程参数和失效应变. 以实验测试和仿真分析结果为基础, 对传统MMC失效模型进行了修正, 建立了全面考虑应变率、应力三轴度和罗德角效应的增材制造TC4材料的失效模型; 同时建立了考虑应力三轴度η和应变率效应的 Johnson-Cook 失效模型. 并通过对增材制造TC4钛合金平板进行高速冲击实验和数值仿真, 验证了本文拟合的该材料的本构模型和失效模型描述高应变率下变形失效行为的有效性.

     

  • 图  1  增材制造TC4钛合金块体材料外观与坐标系

    Figure  1.  The as received Additive Manufacturing TC4 Titanium Alloy and the coordinate system

    图  2  增材制造TC4钛合金的微观组织. (a), (c)垂直于沉积方向;(b), (d)沿沉积方向

    Figure  2.  Microstructure of the additive manufacturing TC4 alloy. (a) and (c): the plane perpendicular to the additive axis, (b) and (d): the plane along the additive axis

    图  3  增材制造TC4钛合金压缩真实应力应变曲线

    Figure  3.  Compression true stress-strain curve of additive manufacturing TC4 titanium alloy

    图  4  增材制造TC4钛合金拉伸载荷位移曲线

    Figure  4.  Tensile load-displacement curve of additive manufacturing TC4 titanium alloy

    图  5  增材制造TC4钛合金拉伸真实应力应变曲线

    Figure  5.  Tensile true stress-strain curve of additive manufacturing TC4 titanium alloy

    图  6  实验前后的试样照片

    Figure  6.  Sample photos before and after the test

    图  7  拉伸JC本构模型与实验值对比

    Figure  7.  Comparison of tensile JC constitutive model and experimental values

    图  8  压缩JC本构模型与实验值对比

    Figure  8.  Comparison of compression JC constitutive model and experimental values

    图  9  缺口试样缺口示意图

    Figure  9.  Schematic diagram of notched sample

    图  10  不同缺口尺寸的轴对称圆棒拉伸试样载荷-位移曲线

    Figure  10.  Load-displacement curves of axisymmetric round bar tensile specimens with different notch sizes

    图  11  不同缺口尺寸的轴对称压缩试样载荷-位移曲线

    Figure  11.  Load-displacement curves of axisymmetric compression specimens with different notch sizes

    图  12  不同缺口尺寸的轴对称压缩试样加载后变化

    Figure  12.  Axisymmetric compression specimens with different notch sizes change after loading

    图  13  DIC测定不同缺口尺寸的轴对称圆棒拉伸试样失效应变

    Figure  13.  DIC determination of the failure strain of the axisymmetric round bar tensile specimens with different notch sizes

    图  14  DIC测定不同缺口尺寸的平板凹槽试样失效应变

    Figure  14.  DIC determination of the failure strain of the flat grooved specimen with different notch sizes

    图  15  DIC测定偏心纯剪切试样失效应变

    Figure  15.  DIC determination of the failure strain of the eccentric pure shear specimen

    图  16  DIC测定缺口压缩试样试样失效应变

    Figure  16.  DIC determination of the failure strain of the notched compression specimen

    图  17  DIC测定中应变率拉伸试样变形失效过程

    Figure  17.  Deformation failure process of tensile specimens measured by DIC at medium strain rate

    图  18  DIC测定高应变率拉伸试样变形失效过程

    Figure  18.  Deformation failure process of tensile specimens measured by DIC at high strain rate

    图  19  不同网格尺寸缺口中心处应力三轴度历程曲线(R = ∞)

    Figure  19.  The stress triaxiality history curve at the center of the notch with different mesh sizes (R = ∞)

    图  20  不同网格尺寸缺口中心处应力三轴度历程曲线(R = 5 mm)

    Figure  20.  The stress triaxiality history curve at the center of the notch with different mesh sizes (R = 5 mm)

    图  21  圆棒缺口拉伸试样网格划分

    Figure  21.  Finite element meshes for notched round bar tensile specimen

    图  22  圆棒缺口拉伸试样数值仿真云图(R = 5 mm)

    Figure  22.  Numerical simulation cloud diagram of round bar notched tensile specimen (R = 5 mm)

    图  23  参数拟合曲线

    Figure  23.  Parameter fitting curve

    图  24  $ {D_4} $拟合曲线

    Figure  24.  Parameter$ {D_4} $ fitting curve

    图  25  增材制造TC4钛合金MMC模型三维断裂轨迹

    Figure  25.  3 D fracture locus of the MMC model of additive manufacturing TC4 titanium alloy

    图  26  MMC模型失效应变与标准化Lode参数曲线($ \eta $ = 0)

    Figure  26.  Failure strain and standardized Lode parameter curve in MMC model ($ \eta $ = 0)

    图  27  考虑应变率效应的MMC失效模型

    Figure  27.  MMC failure model considering strain rate effect

    图  28  平板冲击实验拍摄结果

    Figure  28.  Shooting result of flat impact test

    图  29  实验后靶板形貌

    Figure  29.  Appearance of target after test

    图  30  平板冲击数值仿仿真模型

    Figure  30.  Finite element model for numerical simulation of plate impact

    图  31  平板冲击数值仿真结果(JC本构与失效模型)

    Figure  31.  Numerical simulation results of plate impact (JC constitutive and damage models)

    图  32  平板冲击数值仿真结果(MMC模型)

    Figure  32.  Numerical simulation results of plate impact (MMC model)

    A1  单轴拉伸试样

    A1.  Uniaxial tensile specimen

    A2  轴对称缺口拉伸试样, 缺口半径(a) 2 mm和(b) 5 mm

    A2.  Axisymmetric notched tensile specimen, notch radius (a) 2 mm and (b) 5 mm

    A3  平板凹槽试样

    A3.  Flat grooved specimen

    A4  偏心纯剪切试样图纸

    A4.  Eccentric pure shear specimen

    A5  平面应变(PE)试样

    A5.  Plane strain (PE) specimen

    A6  轴对称缺口压缩试样, 缺口半径2 mm (左)和4 mm (右)

    A6.  Axisymmetric notched compression specimen, notch radius 2 mm (left) and 4 mm (right)

    表  1  增材制造TC4钛合金工艺参数

    Table  1.   Process parameters of additive manufacturing TC4 titanium alloy

    Laser power/
    W
    Scan speed/
    (mm·s−1)
    Powder feeding/
    (g·min−1)
    Laser spot diameter/
    mm
    Layer thickness/
    mm
    Powder gas/
    (L·h−1)
    250010 ~ 1510 ~ 2030.6 ~ 19 ~ 12
    下载: 导出CSV

    表  2  增材制造TC4钛合金JC本构模型参数数值

    Table  2.   Parameter values of JC constitutive model for additive manufacturing of TC4 titanium alloy

    TypeA/MPaB/MPanCm
    tensile838.8742.870.551740.02530.4548
    compression900.1899.420.449900.01930.3248
    下载: 导出CSV

    表  3  准静态实验与数值仿真结果对比

    Table  3.   Comparison of quasi-static experiment and numerical simulation results

    Specimen typeTheoretical initial valueDICNumerical simulation averageFEM
    $ \eta $$ \overline \theta $$ {\overline \varepsilon _f} $${\eta _{{\rm{average}}} }$${\overline \theta _{{\rm{average}}} }$$ {\overline \varepsilon _f} $
    R = ∞ round bar tensile specimen 0.333 1 0.582 0.387 1 0.656
    R = 2 mm round bar notched tensile specimen 0.739 1 0.253 0.990 1 0.241
    R = 5 mm round bar notched tensile specimen 0.516 1 0.337 0.705 1 0.392
    R = 2 mm round bar notched tensile big specimen 0.819 1 0.239 1.008 1 0.172
    PE specimen 0.577 1 0.099 0.601 0.299 0.288
    R = 10 mm flat grooved specimen 0.606 0 0.157 0.591 0.142 0.176
    R = 1 mm flat grooved specimen 0.835 0 0.128 0.914 0.191 0.135
    eccentric pure shear specimen 0 0 0.326 0 −0.116 0.328
    axisymmetric compression specimen −0.333 −1 0.431
    (testing machine )
    −0.53 −1 0.431
    R = 4 mm axisymmetric notched compression specimen −0.556 −1 0.935 −0.668 −1 1.045
    下载: 导出CSV

    表  4  中高应变率失效应变实验数值仿真对比

    Table  4.   Comparison of numerical simulation of failure strain experiments with medium and high strain rate

    Specimen typeStrain rate/s−1DIC (or testing machine)FEM
    $ {\overline \varepsilon _f} $$ {\overline \varepsilon _f} $
    R = ∞ round bar tensile specimen200.5630.631
    1000.5330.588
    25000.4710.529
    axisymmetric compression specimen25000.2230.223
    40000.2190.219
    下载: 导出CSV

    表  5  增材制造TC4钛合金JC失效模型参数值

    Table  5.   Parameter values of JC failure model for additive manufacturing TC4 titanium alloy

    Model parameters$ {D_1} $$ {D_2} $$ {D_3} $$ {D_4} $
    Fitted value−0.561.63−0.750.0316
    下载: 导出CSV

    表  6  增材制造TC4钛合金MMC失效模型参数值

    Table  6.   Parameter values of MMC failure model for additive manufacturing TC4 titanium alloy

    Model parametersA/MPan$ {C_1} $$ {C_2} $/MPa$ \mathop C\nolimits_\theta ^s $$ \mathop C\nolimits_\theta ^c $
    Fitted value1470.70.1630.0399663.50.9581.0
    下载: 导出CSV

    表  7  仿真结果汇总

    Table  7.   Summary of simulation results

    SimulationProtruding height/mmBullet remaining speed/(m·s−1)Piece speed/(m·s−1)
    ValueErrorValueErrorValueError
    MMC3.1410.0%152.216.9%228.318.4%
    JC, s=34.8037.1%176.535.5%
    下载: 导出CSV
  • [1] 张喜燕, 赵永庆, 白晨光. 钛合金及应用. 化学工业出版社, 2005

    Zhang Xiyan, Zhao Yongqing, Bai Chenguang. Ti: Alloy and Its Application. Beijing: Chemical Industry Press, 2005 (in Chinese)
    [2] 汤海波, 吴宇, 张述泉等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势. 精密成形工程, 2019, 11(4): 58-63 (Tang Haibo, Wu Yu, Zhang Shuquan, et al. Research status and development trend of high performance large metallic components by laser additive manufacturing technique. Journal of Netshape Forming Engineering, 2019, 11(4): 58-63 (in Chinese)
    [3] Hollander DA, Walter MV, Wirtz T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6 Al-4 V produced by direct laser forming. Biomaterials, 2006, 27(7): 955-963 doi: 10.1016/j.biomaterials.2005.07.041
    [4] Meier H, Haberland C. Experimental studies on selective laser melting of metallic parts. Materialwissenschaft and Werkstofftechnik, 2008, 39(9): 665-670 doi: 10.1002/mawe.200800327
    [5] Biswas N, Ding JL, Balla VK, et al. Deformation and fracture behavior of laser processed dense and porous Ti6 Al4 V alloy under static and dynamic loading. Materials Science & Engineering A, 2012, 549: 213-221
    [6] Zhan Yu, Xu Hexuan, Du Wenqiang, et al. Research on the influence of heat treatment on residual stress of TC4 alloy produced by laser additive manufacturing based on laser ultrasonic technique. Ultrasonics, 2021, 10: 106466
    [7] 高士友, 张永忠, 石力开等. 激光快速成型TC4钛合金的力学性能. 稀有金属学报, 2004, 1: 29-33 (Gao Shiyou, Zhang Yongzhong, Shi Likai, et al. Mechanical properties of TC4 alloy fabricated by laser direct deposition. Chinese Journal of Rare Metals, 2004, 1: 29-33 (in Chinese)
    [8] 周平, 郭伟国, 李鹏辉等. 激光立体成形TC4钛合金的力学特性与破坏机理. 材料科学与工程学报, 2019, 37(1): 56-63 (Zhou Ping, Guo Weiguo, Li Penghui, et al. Mechanical properties and failure mechanism of laser solid formed TC4 titanium alloy. Journal of Materials Science and Engineering, 2019, 37(1): 56-63 (in Chinese)
    [9] 李鹏辉, 郭伟国, 郭今. 3D激光沉积增材制造TC4高应变率动态力学行为及本构关系. 北京理工大学学报, 2016, 36: 68-73 (Li Penghui, Guo Weiguo, Guo Jin. 3D laser deposition additive manufacturing TC4 high strain rate dynamic mechanical behavior and constitutive relationship. Journal of Beijing Institute of Technology, 2016, 36: 68-73 (in Chinese)
    [10] 薛蕾, 陈静, 林鑫等. 激光成形修复TC4合金锻件的低周疲劳性能. 稀有金属材料与工程, 2011, 40(7): 1225-1229 (Xue Lei, Chen Jing, Lin Xin, et al. Low cycle fatigue property of laser forming repaired TC4 forgings. Rare Metal Materials and Engineering, 2011, 40(7): 1225-1229 (in Chinese)
    [11] 袁经纬, 李卓, 汤海波等. 热处理对激光增材制造 TC4 合金耐蚀性及室温压缩蠕变性能的影响. 航空学报, 2021, 42(10): 478-485 (Yuan Jingwei, Li Zhuo, Tang Haibo, et al. Effect of heat treatment on corrosion resistance and room temperature compression creep of LAMed TC4 alloy. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 478-485 (in Chinese) doi: 10.7527/S1000-6893.2020.24390
    [12] 张治民, 刘海军, 任璐英等. 热处理对热等静压态TC4合金及其降温多道次变形微观组织的影响. 稀有金属材料与工程, 2020, 49(4): 1372-1378 (Zhang Zhimin, Liu Haijun, Ren Luying, et al. Effect of heat treatment on microstructure of hot isostatic pressed TC4 alloy and its multi-pass deformation. Rare Metal Materials and Engineering, 2020, 49(4): 1372-1378 (in Chinese)
    [13] 张霜银, 索涛, 李玉龙. SEM原位加载研究激光增材制造TC4合金变形破坏机制. 西北工业大学学报, 2020, 38(5): 1025-1029 (Zhang Shuangyin, Suo Tao, Li Yulong. In-situ SEM study on deformation and failure mechanism of TC4 titanium alloy by laser additive manufacturing. Journal of Northwestern Polytechnical University, 2020, 38(5): 1025-1029 (in Chinese)
    [14] 王普强, 吴梦杰, 王豫跃等. 不同热处理工艺下激光增材制造TC4钛合金组织与性能研究进展. 航空制造技术, 2020, 63(10): 56-65 (Wang Puqiang, Wu Mengjie, Wang Yuyue, et al. Research development on microstructure and properties of LAM TC4 titanium alloy with different heat treatment processes. Aeronautical Manufacturing Technology, 2020, 63(10): 56-65 (in Chinese)
    [15] 廖聪豪, 周静, 沈洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能. 中国激光, 2020, 47(1): 89-95 (Liao Conghao, Zhou Jing, Shen Hong. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy. Chinese Journal of Lasers, 2020, 47(1): 89-95 (in Chinese)
    [16] Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Engineering Fracture Mechanics, 1983, 21: 541-548
    [17] Gao X, Zhang T, Hayden M, et al. Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy. Int. J. Plast., 2009, 25(12): 2366-2382
    [18] Kim J, Zhang G, Gao X. Modeling of ductile fracture: Application of the mechanism-based concepts. Int. J. Solids Struct., 2007, 44(6): 1844-1862
    [19] Jia Y, Bai Y. Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. International Journal of Mechanical Sciences, 2016, 115: 516-531
    [20] Barsoum I, Faleskog J. Rupture mechanisms in combined tension and shear-Micromechanics. Int. J. Solids Struct., 2007, 44(17): 5481-5498
    [21] Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 2008, 24(6): 1071-1096 doi: 10.1016/j.ijplas.2007.09.004
    [22] 赖兴华, 王磊, 李洁等. 铝型材防撞梁的碰撞断裂失效表征. 清华大学学报:自然科学版, 2017, 57(5): 504-510 (Lai Xinghua, Wang Lei, Li Jie, et al. Characterization of the fracture of an aluminum alloy anticollision-beam to impact loading. Journal of Tsinghua university :Science and Technology, 2017, 57(5): 504-510 (in Chinese)
    [23] Allahverdizadeh N, Gilioli A, Manes A, et al. An experimental and numerical study for the damage characterization of a Ti-6 AL-4 V titanium alloy. International Journal of Mechanical Sciences, 2015, 93: 32-47 doi: 10.1016/j.ijmecsci.2015.01.005
    [24] Neera T, Savage MF. Observationoftension-compressionasymmetryinaandtitanium alloys. Philosophical Magazine, 2005, 85: 279-295
    [25] Fundenberger JJ, Philippe MJ, Wagner F, et al. Modelling and prediction of mechanical properties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys). Acta Materialia, 1997, 45(10): 4041-4055 doi: 10.1016/S1359-6454(97)00099-2
    [26] Sarsfield H, Li W, Petrinic N. An experimental investigation of rate-dependent deformation and failure of three titanium alloys. Journal of Materials Science, 2007, 42(13): 5085-5093 doi: 10.1007/s10853-006-0955-1
    [27] Luo H, Shaw L. On tension/compression asymmetry of an extruded nanocrystalline Al-Fe-Cr-Tialloy. Materials Science and Engineering A, 2005, 409: 249-256
    [28] Bridgman WP . Studies in Large Plastic Flow and Fracture: with Special Emphasis on the Effects of Hydrostatic Pressure. Harvard University Press, 1964
    [29] Bai Y, Teng X, Wierzbicki T. On the application of stress triaxiality formula for plane strain fracture testing. Journal of Engineering Materials and Technology, 2009, 131: 021002
    [30] Peirs J, Verleysen P, Degrieck J. Novel technique for static and dynamic shear testing of Ti6 Al4 V sheet. Experimental Mechanics, 2012, 52(7): 729-741 doi: 10.1007/s11340-011-9541-9
    [31] Roth CC, Mohr D. Determining the strain to fracture for simple shear for a wide range of sheet metals. International Journal of Mechanical Science, 2018, 149: 224-240 doi: 10.1016/j.ijmecsci.2018.10.007
    [32] Mohammed A, Bai Y, Youngsik C. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture-science direct. Engineering Fracture Mechanics, 2015, 147: 140-157 doi: 10.1016/j.engfracmech.2015.08.007
    [33] Bai Y, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 2010, 161(1): 1-20 doi: 10.1007/s10704-009-9422-8
    [34] Bai Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 2004, 46(1): 81-98 doi: 10.1016/j.ijmecsci.2004.02.006
    [35] 初录. 基于数字图像相关的位移测量方法. [硕士论文]. 天津: 天津理工大学, 2021

    Chu Lu. Displacement measurement methodbased on digital image correlation. [Master's Thesis]. Tianjin: Tianjin University of Technology, 2021 (in Chinese)
    [36] Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, 21(1): 31-48 doi: 10.1016/0013-7944(85)90052-9
    [37] Ludwik P, Scheu R. Ueber kerbwirkungen bei flusseisen. Stahl Eisen, 1923, 43: 999-1001

    Ludwik P, Scheu R. About notch effects in flow of iron. Steel Iron, 1923, 43: 999-1001 (in German))
  • 加载中
图(38) / 表(7)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  91
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 录用日期:  2021-12-02
  • 网络出版日期:  2021-12-03
  • 刊出日期:  2022-02-17

目录

    /

    返回文章
    返回