EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细长旋成体亚声速超大攻角非定常流动特性研究

王方剑 王宏伟 李晓辉 董磊 黄湛 陈兰

王方剑, 王宏伟, 李晓辉, 董磊, 黄湛, 陈兰. 细长旋成体亚声速超大攻角非定常流动特性研究. 力学学报, 2022, 54(2): 1-17 doi: 10.6052/0459-1879-21-415
引用本文: 王方剑, 王宏伟, 李晓辉, 董磊, 黄湛, 陈兰. 细长旋成体亚声速超大攻角非定常流动特性研究. 力学学报, 2022, 54(2): 1-17 doi: 10.6052/0459-1879-21-415
Wang Fangjian, Wang Hongwei, Li Xiaohui, Dong Lei, Huang Zhan, Chen Lan. Subsonic unsteady aerodynamic characteristics on slender revolutionary body at extra-wide angle-of-attack. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 1-17 doi: 10.6052/0459-1879-21-415
Citation: Wang Fangjian, Wang Hongwei, Li Xiaohui, Dong Lei, Huang Zhan, Chen Lan. Subsonic unsteady aerodynamic characteristics on slender revolutionary body at extra-wide angle-of-attack. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 1-17 doi: 10.6052/0459-1879-21-415

细长旋成体亚声速超大攻角非定常流动特性研究

doi: 10.6052/0459-1879-21-415
详细信息
    作者简介:

    王方剑, 工程师, 主要研究方向: 非定常空气动力学数值模拟. E-mail: wfangjian@163.com

  • 中图分类号: V211.3

SUBSONIC UNSTEADY AERODYNAMIC CHARACTERISTICS ON SLENDER REVOLUTIONARY BODY AT EXTRA-WIDE ANGLE-OF-ATTACK

  • 摘要: 空空导弹作为现代空战的主要攻击手段, 要求比目标飞机更高的机动性和敏捷性. 新型空空导弹在面对新一代飞机时必须具备全方位攻击能力, 尤其对来自后方目标的威胁, 则需要更高转弯率和更大机动包络线的航向反转机动等先进高效机动方法. 为了保证高效机动的顺利完成, 要求导弹在超大攻角(α = 0° ~ 180°)范围内具有飞行和机动控制能力. 以往对超大攻角流动的观测和研究大多集中在α = 40° ~ 60°范围内, 最大角度不超过90°. 本文采用数值模拟(delayed detached eddy simulation, DDES)与风洞试验(油流显示试验)结合的方法, 研究了细长体亚声速下(Ma = 0.6)攻角α = 0° ~ 180°范围内的瞬时流动特性以及非定常特性. 研究表明, 数值模拟与油流显示试验获得的物面流线吻合较好, 在攻角α = 0° ~ 90°范围内, 细长体背风侧流动主要为圆柱段引起的集中涡主导, 体现为非对称、非定常和涡脱落等流动现象; 在攻角α = 90° ~ 180°范围内, 这时细长体底部朝前, 由此带来较大的回流区, 回流区内存在较多小尺度旋涡相互作用干扰, 随着流动逐渐沿轴向向后发展, 背风侧流动逐渐以非对称涡流动为主导. 非对称旋涡诱导的物面压力脉动频率St范围St = 0.19 ~ 0.33, 底部回流区诱导的物面压力脉动St范围为St = 1.55 ~ 1.64.

     

  • 图  1  圆柱扰流计算域

    Figure  1.  Domain of calculation

    图  2  圆柱横截面网格

    Figure  2.  Zoomed-in-view of mesh around the cylinder

    图  3  压力分布试验值[38-40]与计算值压力分布对比

    Figure  3.  Comparisons of pressure coefficients distribution[38-40]

    图  4  圆柱扰流尾迹流动结构

    Figure  4.  Q-criterion iso-surface of wake

    图  5  模型的支撑设计

    Figure  5.  Support design of experimental model

    图  6  油流流动显示试验测量布局

    Figure  6.  Oil-flow visualization test measurement layout

    图  7  细长旋成体外形 (单位: mm)

    Figure  7.  Slender revolutionary body (unit: mm)

    图  8  细长体网格

    Figure  8.  Mesh of slender revolutionary body

    图  9  3套不同规模网格示意

    Figure  9.  Three grids with different cell counts

    图  10  CFD物面流线与油流试验对比(α = 30°)

    Figure  10.  Surface streamlines comparisons between CFD and oil-flow test (α = 30°)

    图  11  物面流线及空间流动(α = 30°)

    Figure  11.  Surface streamlines and flow (α = 30°)

    图  12  各截面压力分布(α=30°)

    Figure  12.  Pressure distribution of cross sections (α=30°)

    图  13  CFD物面流线与油流试对比(α = 60°)

    Figure  13.  Surface streamlines comparisons between CFD and oil-flow test (α = 60°)

    图  14  物面流线及空间流动(α = 60°)

    Figure  14.  Surface streamlines and flow (α = 60°)

    图  15  各截面压力分布(α = 60°)

    Figure  15.  Pressure distribution of cross sections (α = 60°)

    图  16  物面流线及空间流动(α = 90°)

    Figure  16.  Surface streamlines and flow (α = 90°)

    图  17  各截面压力分布(α = 90°)

    Figure  17.  Pressure distribution of cross sections (α = 90°)

    图  18  CFD物面流线与油流试验对比(α = 120°)

    Figure  18.  Surface streamlines comparisons between CFD and oil-flow test (α = 120°)

    图  19  物面流线及空间流动(α = 120°)

    Figure  19.  Surface streamlines and flow (α = 120°)

    图  20  各截面压力分布(α = 120°)

    Figure  20.  Pressure distribution of cross sections (α = 120°)

    图  21  CFD物面流线与油流试验对比(α=150°)

    Figure  21.  Surface streamlines comparisons between CFD and oil-flow test (α=150°)

    图  22  物面流线及空间流动(α=150°)

    Figure  22.  Surface streamlines and flow (α=150°)

    图  23  CFD物面流线与油流试验对比(α = 180°)

    Figure  23.  Surface streamlines comparisons between CFD and oil-flow test (α = 180°)

    图  24  截面涡量随时间变化(α = 60°, X = 350 mm)

    Figure  24.  Vortice of cross section (α = 60°, X = 350 mm)

    图  25  截面涡量随时间变化(α = 60°, X = 550 mm)

    Figure  25.  Vortice of cross section (α = 60°, X = 350 mm)

    图  26  截面涡量随时间变化(α = 90°, X = 350 mm)

    Figure  26.  Vortice of cross section (α = 90°, X = 350 mm)

    图  27  截面涡量随时间变化(α = 120°, X = 350 mm)

    Figure  27.  Vortice of cross section (α = 120°, X = 350 mm)

    图  28  截面涡量随时间变化(α = 120°, Y = 0 mm)

    Figure  28.  Vortice of cross section (α = 120°, Y = 0 mm)

    图  29  截面涡量随时间变化(α = 150°, X = 350 mm)

    Figure  29.  Vortice of cross section (α = 150°, X = 350 mm)

    图  30  截面涡量随时间变化(α = 150°, Y = 0 mm)

    Figure  30.  Vortice of cross section (α = 150°, Y = 0 mm)

    图  31  截面涡量随时间变化(α = 180°, Y = 0 mm)

    Figure  31.  Vortice of cross section (α = 180°, Y = 0 mm)

    图  32  监测点及截面位置示意图

    Figure  32.  Location of monitored point and cross section

    图  33  监测点压力脉动(α = 60°, X = 550 mm)

    Figure  33.  Fluctuating pressure of monitored point (α = 60°, X = 550 mm)

    图  34  监测点压力脉动(α = 90°)

    Figure  34.  Fluctuating pressure of monitored point (α = 90°)

    图  35  监测点压力脉动(α = 120°)

    Figure  35.  Fluctuating pressure of monitored point (α = 120°)

    图  36  监测点压力脉动(α = 150°)

    Figure  36.  Fluctuating pressure of monitored point (α = 150°)

    图  37  监测点压力脉动(α = 180°)

    Figure  37.  Fluctuating pressure of monitored point (α = 180°)

    图  38  不同攻角下的非定常流动频率St

    Figure  38.  St of unsteady flow versus angle of attack

    表  1  网格无关性

    Table  1.   Sensitivity of mesh resolution

    Cell counts/104CLCdSt
    5304.327.020.185
    15004.727.330.191
    42004.697.210.192
    下载: 导出CSV

    表  2  时间步长无关性

    Table  2.   Sensitivity of physical time step

    Physical time step/10−5CLCdSt
    1.24.777.320.193
    2.34.727.330.191
    54.827.440.182
    下载: 导出CSV
  • [1] Thukral A, Innocenti M. A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering. IEEE Transactions on Control Systems Technology, 1998, 6(3): 359-371 doi: 10.1109/87.668037
    [2] Nielsen J. Missile Aerodynamics. Nielsen Engineering & Research, 1988
    [3] Allen HJ, Perkins EW. A study of effects of viscosity on flow over slender inclined bodies of revolution//National Advisory Committee for Aeronautics, 1952
    [4] Sarpkaya T. Separated flow about lifting bodies and impulsive flow about cylinders//AIAA Second Annual Meeting, 1965
    [5] Thomson KD, Morrison DF. The spacing, position and strength of vortices in the wake of slender. Journal of Fluid Mechanics, 1971, 50(4): 751-783 doi: 10.1017/S0022112071002878
    [6] Yanta WJ, Wardlaw AB. The secondary separation region on a body at high angles of attack, AIAA82-0343 l, 1982
    [7] Ericsson LE, Reding JP. Vortex-induced asymmetric loads in 2-D and 3-D flows. AIAA80-0181, 1980
    [8] Lamont PJ. The complex asymmetric flow over a 3.5D ogive nose and cylindrical afterbody at high angle of attack. AIAA82-0053, 1982
    [9] Ericsson LE, Reding JP. Aerodynamic effects of asymmetric vortex shedding from slender bodies. AIAA85-1797, 1985
    [10] Wardlaw AB, Morrison AM. Induced side forces at high angles of attack. Journal of Spacecraft, 1976, 13(10): 589-393 doi: 10.2514/3.27931
    [11] Lamont PJ, Hunt BL. Pressure and force distributions on a sharp-nosed circular cylinder at large angles of inclination to a uniform subsonic stream. Journal of Fluid Mechanics, 1976, 76(3): 519-559 doi: 10.1017/S0022112076000773
    [12] Dexter PC. The effect of roll angle on the flow over a slender revolutionary body of revolution at high angle of attack. AIAA81-0358, 1981
    [13] Luo SC, Lim TT, Lua KB, et al. Flowfield around ogive elliptic-tip cylinder at high angle of attack. AIAA Journal, 1998, 36(10): 1778-1787 doi: 10.2514/2.286
    [14] Degani D, Tobak N. Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies at incidence. AIAA91-0291, 1991
    [15] Chen XR, Deng XY, Wang YK, et al. Influence of nose perturbations on behaviors of asymmetric vortices over slender revolutionary body. Acta Mechanica Sinica, 2002, 18(6): 581-593 doi: 10.1007/BF02487960
    [16] Hsieh T. An investigation of separated flow about a hemisphere-cylinder at 0-19-deg incidence in the Mach number from 0.6 to 1.5. AIAA77-179, 1977
    [17] Hsieh T, Wang KC. Three-dimensional separated flow structure over a cylinder with a hemispherical cap. Journal of Fluid Mechanics, 1996, 324: 83-108 doi: 10.1017/S0022112096007847
    [18] Ericsson LE, Reding JP. Steady and unsteady vortex-induced asymmetric loads on slender vehicles. AIAA80-0181, 1980
    [19] Zeiger MD, Telionis DP, Vlachos PP. Unsteady separated flows over three-dimensional slender bodies. Progress in Aerospace Sciences, 2004, 40: 291-320 doi: 10.1016/j.paerosci.2004.06.002
    [20] 管小荣, 徐诚. 细长体大攻角非对称涡流的数值模拟. 弹道学报, 2007, 19(1): 55-58 (Guan Xiaorong, Xu Cheng. Numerical investigation of asymmetric vortical flow over a slender revolutionary body at large angle of attack. Journal of Ballistics, 2007, 19(1): 55-58 (in Chinese) doi: 10.3969/j.issn.1004-499X.2007.01.016
    [21] 杨云军, 周伟江. 细长体大迎角湍流流场的数值模拟. 空气动力学学报, 2003, 21(3): 351-355 (Yang Yunjun, Zhou Weijiang. Numerical simulation of turbulence flows about a slender pointed body at high angle of attack. Acta Aerodynamica Sinica, 2003, 21(3): 351-355 (in Chinese) doi: 10.3969/j.issn.0258-1825.2003.03.013
    [22] 张赢, 刘超峰. 导弹自翻转的超大攻角非定常气动特性研究. 弹箭与指导学报, 2015, 35(5): 112-118 (Zhang Ying, Liu Chaofeng. Unsteady aerodynamics characteristics on self-turning of missile at extra-wide angle of attack. Journal of Projectiles,Rockets,Missiles and Guidance, 2015, 35(5): 112-118 (in Chinese)
    [23] 刘仙名, 符松. 用可实现k-ε模式对细长体大攻角分离流场的数值模拟. 计算力学学报, 2006, 23(3): 275-279 (Liu Xianming, Fu Song. Numerical simulation of separated flows over slender revolutionary body at high-angle-of-attack with k-ε model comforming realizability. Chinese Journal of Computational Mechanics, 2006, 23(3): 275-279 (in Chinese) doi: 10.3969/j.issn.1007-4708.2006.03.004
    [24] Degani D, Zilliac GG. Experimental study of nonsteady asymmetric flow around an ogive-cylinder at incidence. AIAA Journal, 1990, 28(4): 642-649 doi: 10.2514/3.10441
    [25] Ayoub A, Karamcheti K. An experiment on the flow past a finite circular cylinder at high subcritical and supercritical Reynolds numbers. Journal of Fluid Mechanics, 1982, 118: 1-26 doi: 10.1017/S0022112082000937
    [26] Keneer ER. Flow-separation patterns on symmetric forebodies. Technical Memorandum, NASA, 1986
    [27] Spalart PR. Detached-eddy simulation. Annual Review of Fluid Mechanics, 2009, 41: 181-202 doi: 10.1146/annurev.fluid.010908.165130
    [28] Spalart PR, Deck S, Shur ML, et al. A new version of detached-eddy simulation. Resistant to Ambiguous Grid Densities, Theoretical and Computational Fluid Dynamic, 2006, 20(3): 181-195 doi: 10.1007/s00162-006-0015-0
    [29] Guo PX, Gao ZX, Wu ZW, et al. Investigations on the accurate prediction of supersonic shear layers for detached eddy simulation. Aerospace Science and Technology, 2019, 89: 46-57 doi: 10.1016/j.ast.2019.03.045
    [30] Wu ZY, Gao ZX, Jiang CW, et al. An in-depth numerical investigation of a supersonic cavity-ramp flow with DDES method. Aerospace Science and Technology, 2019, 89: 253-263 doi: 10.1016/j.ast.2019.03.055
    [31] Zhou L, Gao ZH, Du YM, et al. Flow-dependent DDES/γ−Reθt coupling model for the simulation of separated transitional flow. Aerospace Science and Technology, 2019, 87: 389-403 doi: 10.1016/j.ast.2019.02.037
    [32] Li RY, Gao LM, Ma C, et al. Corner separation dynamics in a high-speed compressor cascade based on detached-eddy simulation. Aerospace Science and Technology, 2020, 99: 105730
    [33] Costes M, Moens F. Advanced numerical prediction of iced airfoil aerodynamics. Aerospace Science and Technology, 2019, 91: 186-207 doi: 10.1016/j.ast.2019.05.010
    [34] Yi Y, Hu TX, Liu PQ, et al. Dynamic lift characteristics of nonslender delta wing in large-amplitude-pitching. Aerospace Science and Technology, 2020, 115: 105937
    [35] Hu TX, Cheng CF, Liu PQ, et al. Control of self-induced roll oscillations using the sinusoidal leading-edge for low-aspect-ratio wings. Experiments in Fluids, 2020, 61: 166
    [36] Dawi AH, Akkermans RAD. Direct and integral noise computation of two square cylinders in tandem arrangement. Journal of Sound and Vibration, 2018, 436: 138-154 doi: 10.1016/j.jsv.2018.09.008
    [37] Dawi AH, Akkermans RAD. Spurious noise in direct noise computation with a finite volume method for automotive applications. International Journal of Heat and Fluid Flow, 2018, 72: 243-256 doi: 10.1016/j.ijheatfluidflow.2018.06.008
    [38] Van Nunen JWG. Pressure and forces on a circular cylinder in a cross flow at high Reynolds numbers in: Naudascher E(ed.), Flow Induced Structural Vibrations, Berlin: Springer-Verlag, 1974: 748-754
    [39] Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 1961, 10(2): 345-356
    [40] Zhang L, Wray TJ, Agarwal RK. Numerical simulation of flow past a circular and a square cylinder at high Reynolds number. AIAA2017-3322, 2017
    [41] Wang FJ, Liu J, Qin H, et al. Unsteady aerodynamic characteristics of slender revolutionary body at extra-wide angle-of-attack range. Aerospace Science and Technology, 2021, 110: 106477
  • 加载中
图(38) / 表(2)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  119
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 录用日期:  2021-12-10
  • 网络出版日期:  2021-12-11

目录

    /

    返回文章
    返回