EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑振动非平衡的可压缩库埃特流动及其传热

罗健 王智慧

罗健, 王智慧. 考虑振动非平衡的可压缩库埃特流动及其传热. 力学学报, 2022, 54(1): 83-93 doi: 10.6052/0459-1879-21-414
引用本文: 罗健, 王智慧. 考虑振动非平衡的可压缩库埃特流动及其传热. 力学学报, 2022, 54(1): 83-93 doi: 10.6052/0459-1879-21-414
Luo Jian, Wang Zhihui. Compressible Couette flow and its heat transfer under vibrational nonequilibrium effects. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 83-93 doi: 10.6052/0459-1879-21-414
Citation: Luo Jian, Wang Zhihui. Compressible Couette flow and its heat transfer under vibrational nonequilibrium effects. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 83-93 doi: 10.6052/0459-1879-21-414

考虑振动非平衡的可压缩库埃特流动及其传热

doi: 10.6052/0459-1879-21-414
基金项目: 国家自然科学基金 (11672292, 12072343), 中国科学院青年创新促进会 (2017490), 中科院战略性科技先导专项B类 (XDB22040202)资助项目
详细信息
    作者简介:

    王智慧, 教授, 主要研究方向: 高超声速空气动力学、气动热力学、稀薄气体动力学. E-mail: wisdom@ucas.ac.cn

  • 中图分类号: O354.7

COMPRESSIBLE COUETTE FLOW AND ITS HEAT TRANSFER UNDER VIBRATIONAL NONEQUILIBRIUM EFFECTS

  • 摘要: 新型近空间高超声速飞行器大多具有尖头薄翼的外形, 驻点下游机身附近的强剪切流动及气动加热具有显著的非平衡特征. 由于加热总量预估和实验测热数据辨识的需要, 工程上越来越关注强剪切非平衡流动及气动加热预测问题. 本文结合理论建模和直接模拟蒙特卡洛数值模拟, 研究了振动非平衡条件下的可压缩库埃特流动的气动力/热问题. 首先基于参考温度方法, 在量热完全气体模型下, 得到了可压缩库埃特流动参考温度的理论公式. 然后分析了振动非平衡过程对于参考温度和雷诺比拟关系的影响, 得到了表征振动非平衡强弱程度的无量纲判据, 并利用该判据构建了考虑振动非平衡效应的摩阻与热流预测理论. 最后用DSMC计算数据对理论分析结果进行了验证与标定. 理论和数值结果表明, 振动非平衡效应会导致可压缩库埃特流动的摩阻减小, 但热流和摩阻仍然满足雷诺比拟关系, 只是比拟系数需要引入振动能传热影响的修正. 该研究可以加深对强剪切流动中振动非平衡效应的认识, 其中的非平衡流动判据也可进一步推广用于研究更为实际的气动加热问题.

     

  • 图  1  高超声速飞行器周围流场结构示意图

    Figure  1.  Schematic of the flow over a hypersonic vehicle

    图  2  库埃特流动示意图

    Figure  2.  Schematic of the Couette flow

    图  3  热完全气体库埃特流动中能量传递与转化的广义模型

    Figure  3.  General model of the energy transfer and conversion in the Couette flow of a thermally perfect gas

    图  4  高超声速库埃特流动剖面示意图

    Figure  4.  Profiles of the hypersonic Couette flow

    图  5  量热完全气体库埃特流动剖面

    Figure  5.  Profiles of the Couette flow of a calorically perfect gas

    图  6  可压缩修正因子${\phi _{\text{c}}}$的等值线图

    Figure  6.  Contour map of the compressibility correction factor ${\phi _{\text{c}}}$

    图  7  量热完全气体可压缩修正因子近似理论解与精确解和DSMC数据之间的对比

    Figure  7.  Theoretical prediction of compressibility correction factor ${\phi _{\text{c}}}$ under calorically perfect gas model and its comparison with the exact solution and DSMC results

    图  8  热完全气体可压缩库埃特流动的温度剖面

    Figure  8.  Temperature profiles of the Couette flow of a thermally perfect gas

    图  9  可压缩修正因子随振动非平衡判据的归一化变化

    Figure  9.  Normalized variation of compressibility correction factor with the vibrational nonequilibrium criterion

    图  10  不同气体模型下库埃特流动的雷诺比拟关系

    Figure  10.  Reynolds analogy of the Couette flows under different gas models

    图  11  不同条件下库埃特流动壁面摩阻的理论预测和DSMC数值结果的对比

    Figure  11.  Comparison of the theoretical prediction and DSMC results of the skin-friction of Couette flows

    图  12  不同条件下库埃特流动壁面热流的理论预测和DSMC数值结果的对比

    Figure  12.  Comparison of the theoretical prediction and DSMC results of the heat flux of Couette flows

  • [1] 周恒, 张涵信. 空气动力学的新问题. 中国科学: 物理学 力学 天文学, 2015, 45: 104709 (Zhou Heng, Zhang Hanxin. New problems of aerodynamics. Sci. Sin.-Phys. Mech. Astron., 2015, 45: 104709 (in Chinese) doi: 10.1360/SSPMA2015-00402
    [2] 樊菁. 稀薄气体动力学: 进展与应用. 力学进展, 2013, 43(2): 185-201 (Fan Jing. Rarefied gas dynamics: advances and applications. Advances in Mechanics, 2013, 43(2): 185-201 (in Chinese)
    [3] Bertin JJ, Cummings RM. Critical hypersonic aerothermodynamic phenomena. Annual Review of Fluid Mechanics, 2006, 38(1): 129-157 doi: 10.1146/annurev.fluid.38.050304.092041
    [4] Muntz EP. Rarefied gas dynamics. Annual Review of Fluid Mechanics, 1989, 21(1): 387-422 doi: 10.1146/annurev.fl.21.010189.002131
    [5] Chen J, Zhou H. Rarefied gas effect in hypersonic shear flows. Acta Mechanica Sinica, 2021, 37(1): 2-17 doi: 10.1007/s10409-021-01051-9
    [6] Jiang W, Qiu H, Yang Y, et al. High frequency ac electric glow discharge visualization technology and application in big diameter hypersonic low-density wind tunnel. Advances in Aerodynamics, 2021, 3(1): 14
    [7] 刘畅, 徐昆. 离散时空直接建模思想及其在模拟多尺度输运中的应用. 空气动力学学报, 2019, 38(2): 197-216 (Liu Chang, Xu Kun. Direct modeling methodology and its applications in multiscale transport process. Acta Aerodynamica Sinica, 2019, 38(2): 197-216 (in Chinese)
    [8] 王宏宇, 王辉, 石义雷等. 一种高超声速稀薄流激波干扰气动热测量技术. 宇航学报, 2020, 41(12): 1525-1532 (Wang Hongyu, Wang Hui, Shi Yilei, et al. An aerothermodynamics measuring technique for shock interactions in hypersonic low density flow. Journal of Astronautics, 2020, 41(12): 1525-1532 (in Chinese)
    [9] Candler GV. Rate effects in hypersonic flows. Annual Review of Fluid Mechanics, 2019, 51(1): 379-402 doi: 10.1146/annurev-fluid-010518-040258
    [10] 李志辉, 梁杰, 李中华等. 跨流域空气动力学模拟方法与返回舱再入气动研究. 空气动力学学报, 2018, 36(5): 826-847 (Li Zhihui, Liang Jie, Li Zhonghua, et al. Simulation methods of aerodynamics covering various flow regimes and applications to aerodynamic characteristics of re-entry spacecraft module. Acta Aerodynamica Sinica, 2018, 36(5): 826-847 (in Chinese) doi: 10.7638/kqdlxxb-2018.0121
    [11] Coumar S, Lago V. Influence of Mach number and static pressure on plasma flow control of supersonic and rarefied flows around a sharp flat plate. Experiments in Fluids, 2017, 58(6): 74
    [12] Wu L, Reese JM, Zhang Y. Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows. Journal of Fluid Mechanics, 2014, 746: 53-84 doi: 10.1017/jfm.2014.79
    [13] Ivanov MS, Gimelshein SF. Computational hypersonic rarefied flows. Annual Review of Fluid Mechanics, 1998, 30(1): 469-505 doi: 10.1146/annurev.fluid.30.1.469
    [14] Oran ES, Oh CK, Cybyk BZ. Direct simulation Monte Carlo: recent advances and applications. Annual Review of Fluid Mechanics, 1998, 30(1): 403-441 doi: 10.1146/annurev.fluid.30.1.403
    [15] Anderson JD. Hypersonic and High-Temperature Gas Dynamics, 2nd Edn. Reston: American Institute of Aeronautics and Astronautics, 2006
    [16] Kasen S. Thermal management at hypersonic leading edges. [PhD Thesis]. Virginia: University of Virginia, 2013
    [17] Schwartz RN, Slawsky ZI, Herzfeld KF. Calculation of vibrational relaxation times in gases. The Journal of Chemical Physics, 1952, 20(10): 1591-1599 doi: 10.1063/1.1700221
    [18] Schwartz RN, Herzfeld KF. Vibrational relaxation times in gases (three-dimensional treatment). The Journal of Chemical Physics, 1954, 22(5): 767-773 doi: 10.1063/1.1740190
    [19] Shuler KE. Studies in non-equilibrium rate processes. II. The relaxation of vibrational non-equilibrium distributions in chemical reactions and shock waves. The Journal of Physical Chemistry, 1957, 61(7): 849-856
    [20] Montroll EW, Shuler KE. Studies in nonequilibrium rate processes. I. The relaxation of a system of harmonic oscillators. The Journal of Chemical Physics, 1957, 26(3): 454-464
    [21] Boyd ID, Josyula E. State resolved vibrational relaxation modeling for strongly nonequilibrium flows. Physics of Fluids, 2011, 23(5): 57101 doi: 10.1063/1.3584128
    [22] Tong H. Effects of dissociation energy and vibrational relaxation on heat transfer. AIAA Journal, 1966, 4(1): 14-18 doi: 10.2514/3.3377
    [23] Mori Y, Himeno N, Hijikata K, et al. Effects of vibrational relaxation of multi-atomic molecules on stagnation heat transfer. International Journal of Heat and Mass Transfer, 1980, 23(12): 1625-1633 doi: 10.1016/0017-9310(80)90221-5
    [24] Schubert BS. Vibrational nonequilibrium stagnation shock layers at hypersonic speed and low Reynolds number. International Journal of Heat and Mass Transfer, 1978, 21(8): 1041-1048 doi: 10.1016/0017-9310(78)90102-3
    [25] Bird GA. The DSMC Method. CreateSpace Independent Publishing Platform, 2013
    [26] Treanor CE, Marrone PV. Effect of dissociation on the rate of vibrational relaxation. The Physics of Fluids, 1962, 5(9): 1022 doi: 10.1063/1.1724467
    [27] Marrone PV, Treanor CE. Chemical relaxation with preferential dissociation from excited vibrational levels. The Journal of Chemical Physics, 1963, 6(9): 1215
    [28] Heims SP. Moment equations for vibrational relaxation coupled with dissociation. The Journal of Chemical Physics, 1963, 38(3): 603-606 doi: 10.1063/1.1733712
    [29] 彭傲平, 李志辉, 吴俊林等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703 (Peng Aoping, Li Zhihui, Wu Junlin, et al. Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation. Acta Physica Sinica, 2017, 66(20): 204703 (in Chinese) doi: 10.7498/aps.66.204703
    [30] 杨超, 孙泉华. 高温气体热化学反应的DSMC微观模型分析. 力学学报, 2018, 50(4): 722-733 (Yang Chao, Sun Quanhua. Analysis of DSMC reaction models for high temperature gas simulation. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 722-733 (in Chinese) doi: 10.6052/0459-1879-18-056
    [31] Luo J, Wang ZH. Analogy between vibrational and chemical nonequilibrium effects on stagnation flows. AIAA Journal, 2020, 58(5): 2156-2164 doi: 10.2514/1.J059010
    [32] Gladwell GML, Meier GEA, Sreenivasan KR, et al. IUTAM Symposium on One Hundred Years of Boundary Layer Research. Solid Mechanics and Its Applications. Dordrecht: Springer Netherlands, 2006
    [33] Illingworth CR. Some Solutions of the Equations of Flow of A Viscous Compressible Fluid. Cambridge: Cambridge University Press, 1950
    [34] Liepmann HW, Bleviss ZO. The effects of dissociation and ionization on compressible Couete flow. Douglas Aircraft Co. Report, SM-19831, 1956
    [35] Liepmann HW, Roshko A. Elements of Gas Dynamics. Mineola New York: Dover Publications Inc, 2001
    [36] Morris DL, Hannon L, Garcia AL. Slip length in a dilute gas. Physical Review A, 1992, 46(8): 5279-5281 doi: 10.1103/PhysRevA.46.5279
    [37] López-Lemus J, Velasco RM. Slip boundary conditions in Couete flow. Physica A: Statistical Mechanics and its Applications, 1999, 274(3-4): 454-465 doi: 10.1016/S0378-4371(99)00270-8
    [38] Gallis MA, Torczynski JR, Rader DJ, et al. Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couete flow. Physics of Fluids, 2006, 18(1): 17104 doi: 10.1063/1.2166449
    [39] Abramov AA, Butkovskii AV. The extended Reynolds analogy for the Couete problem: similarity parameters. International Journal of Heat and Mass Transfer, 2018, 117: 313-318 doi: 10.1016/j.ijheatmasstransfer.2017.10.011
    [40] Sarma GSR. Some parameter studies on hypersonic Couete flow. International Journal of Modern Physics C, 1994, 5(2): 237-239 doi: 10.1142/S0129183194000234
    [41] Rubesin MW, Johnson HA. A critical review of skin-friction and heat-transfer solutions of the laminar boundary layer of a flat plate. Transactions of the ASME, 1949, 71(4): 383-388
    [42] Dorrance WH. Viscous Hypersonic Flow: Theory of Reacting and Hypersonic Boundary Layers. Mineola New York: Dover Publications Inc, 2017
    [43] Eckert ERG. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature. Transactions of the ASME, 1956, 78(6): 1273-1283
    [44] Young GBW, Janssen E. The compressible boundary layer. Journal of the Aeronautical Sciences, 1952, 19(4): 229-236 doi: 10.2514/8.2236
    [45] Reynolds O. On the extent and action of the heating surface of steam boilers. Proceedings of the Manchester Literary and Philosophical Society, 1874, 14: 7-12
    [46] Van Driest ER. Investigation of laminar boundary layer in compressive fluids using the crocco method. NACA Technical Note 2597, 1952
    [47] Cohen NB. Correlation formulas and tables of density and some transport properties of equilibrium dissociating air for use in solutions of the boundary-layer equations. NASA Technical Note D-194, 1960
    [48] Debrestian DJ, Anderson JD. Reference temperature method and reynolds analogy for chemically reacting nonequilibrium flowfields. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 190-192 doi: 10.2514/3.522
    [49] Ott JD, Anderson JD. Effects of nonequilibrium chemistry on the reference temperature method and Reynolds analogy. Journal of Thermophysics and Heat Transfer, 1994, 8(2): 381-384 doi: 10.2514/3.553
    [50] Uribe FJ, Mason EA, Kestin J. Thermal conductivity of nine polyatomic gases at low density. Journal of Physical and Chemical Reference Data, 1990, 19(5): 1123-1136 doi: 10.1063/1.555864
    [51] Bergman TL, Incropera FP. Fundamentals of Heat and Mass Transfer, 7th Edn. Hoboken NJ: Wiley, 2011
    [52] Chen XX, Wang ZH, Yu YL. Nonlinear shear and heat transfer in hypersonic rarefied flows past flat plates. AIAA Journal, 2015, 53(2): 413-419 doi: 10.2514/1.J053168
  • 加载中
图(12)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  24
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-21
  • 录用日期:  2021-12-20
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2022-01-18

目录

    /

    返回文章
    返回