HOJMAN CONSERVED QUANTITY FOR TIME SCALES LAGRANGE SYSTEMS
-
摘要: 利用对称性和守恒律, 可以简化动力学问题甚至求解力学系统的精确解, 更好地理解其动力学行为. 时间尺度分析将连续和离散动力学模型统一并拓展到时间尺度框架, 既避免了重复研究又可揭示两者之区别和联系. 因此, 通过对称性来探寻在时间尺度的框架下新的守恒定律很有必要. 本文首先建立了时间尺度上Lagrange方程, 利用时间尺度微积分性质导出了时间尺度上Lagrange系统的两个重要关系式; 其次, 依据微分方程在单参数Lie变换群下的不变性, 建立了时间尺度上Lie对称性的定义和确定方程; 最后, 建立了时间尺度上Lie对称性定理并利用上述关系式给出了证明, 得到了时间尺度上Lagrange系统的新守恒量. 当时间尺度取为实数集时, 该守恒量退化为著名的Hojman守恒量. 文末考察了一个两自由度时间尺度Lagrange系统, 在3种不同时间尺度情形下得到了该系统的Hojman守恒量, 数值计算结果验证了定理的正确性.
-
关键词:
- Lagrange系统 /
- Lie对称性 /
- Hojman守恒量 /
- 时间尺度
Abstract: By using symmetry and conservation laws, we can simplify dynamical problem and even obtain the exact solution of mechanical system, and better understand the dynamical behavior of system. Time scales analysis unifies and extends the continuous and discrete dynamics models to the time scales framework, which not only avoids repeated studies but also reveals the differences and connections between them. Therefore, it is necessary to explore new conservation laws in the framework of time scale through symmetry. Firstly, the Lagrange equations on time scales are established, and two important relations of time scales Lagrange system are derived by using the properties of time scales calculus. Secondly, according to the invariance of differential equation under the one-parameter Lie group of transformations, the definition of Lie symmetry on time scales and its determining equation are established. Thirdly, the Lie symmetry theorem on time scales is established and proved by using the above relations, and the new conservation laws of time scales Lagrange system are obtained. When the time scale is taken to the set of real numbers, the conservation laws degenerate to the famous Hojman conserved quantity. Finally, a two-degree-of-freedom time scales Lagrange system is investigated, and its Hojman conserved quantities are obtained in three different time scales, and the correctness of the theorem we obtained is verified by numerical calculation.-
Key words:
- Lagrange system /
- Lie symmetry /
- Hojman conserved quantity /
- time scales
-
表 1 时间尺度
$ {{\mathbb{T}}} = {2^{{{\mathbb{N}}_0}}} $ 上$ {q_1},{q_2},{I_1},{I_2} $ 的值Table 1. The values of
$ {q_1},{q_2},{I_1},{I_2} $ on the time scale$ {{\mathbb{T}}} = {2^{{{\mathbb{N}}_0}}} $ $ {\mathbb{T}}/{\rm{s}} $ $ {q_1}/{\rm{m}} $ $ {q_2}/{\rm{m}} $ $ {I_1} $ $ {I_2} $ 1 1 0 −9.33 6 2 2 1 −9.33 6 4 0 −5 −9.33 6 8 −20 −81 −9.33 6 16 −124 −745 −9.33 6 32 −588 −6169 −9.33 6 64 −2540 −49785 −9.33 6 表 2 时间尺度
${{\mathbb{T}}} = {{\mathbb{Z}}_ + }$ 上$ {q_1},{q_2},{I_1},{I_2} $ 的值.Table 2. The values of
$ {q_1},{q_2},{I_1},{I_2} $ on the time scale${{\mathbb{T}}} = {{\mathbb{Z}}_ + }$ $ {\mathbb{T}}/{\rm{s}} $ $ {q_1} /{\rm{m}}$ $ {q_2}/{\rm{m}} $ $ {I_1} $ $ {I_2} $ 1 1 0 −4 4 2 2 1 −4 4 3 2 0 −4 4 4 1 −4 −4 4 5 −1 −12 −4 4 6 −4 −25 −4 4 7 −8 −44 −4 4 8 −13 −70 −4 4 9 −19 −104 −4 4 10 −26 −147 −4 4 -
[1] 梅凤翔, 吴惠彬, 李彦敏. 分析力学史略. 北京: 科学出版社, 2019(Mei Fengxiang, Wu Huibin, Li Yanmin. A Brief History of Analytical Mechanics. Beijing: Science Press, 2019 (in Chinese)) [2] Mei FX, Wu HB, Zhang YF. Symmetries and conserved quantities of constrained mechanical systems. International Journal of Dynamics and Control, 2014, 2(3): 285-303 doi: 10.1007/s40435-013-0043-8 [3] Bluman GW, Anco SC. Symmetry and Integration Methods for Differential Equations. New York: Springer-Verlag, 2002 [4] Mei FX. Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mechanica, 2000, 141(3): 135-148 [5] Han YL, Wang XX, Zhang ML, et al. Lie symmetry and approximate Hojman conserved quantity of appell equations for a weakly nonholonomic system. Nonlinear Dynamics, 2013, 71(3): 401-408 doi: 10.1007/s11071-012-0657-y [6] Fu JL, Fu LP, Chen BY, et al. Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives. Physics Letters A, 2016, 380(1): 15-21 [7] Zhang XT, He JM, Luo SK. A new type of fractional Lie symmetrical method and its applications. International Journal of Theoretical Physics, 2017, 56(3): 971-990 doi: 10.1007/s10773-016-3240-3 [8] Zhang Y, Wang XP. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. International Journal of Non-Linear Mechanics, 2018, 105: 165-172 doi: 10.1016/j.ijnonlinmec.2018.05.027 [9] 孟蕾, 项春, 丁明明等. 非完整蛇形机器人系统的Lie对称性和守恒量. 应用力学学报, 2021, 38(2): 441-449 (Meng Lei, Xiang Chun, Ding Mingming, et al. Lie symmetry and conserved quantity of non-holonomic snake robot system. Chinese Journal of Applied Mechanics, 2021, 38(2): 441-449 (in Chinese) [10] Bahar LY, Kwatny HG. Extention of Noether’s theorem to constrained non-conservative dynamical systems. International Journal of Nonlinear Mechanics, 1987, 22(2): 125-138 doi: 10.1016/0020-7462(87)90015-1 [11] Wang P, Xue Y, Liu YL. Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod. Chinese Physics B, 2013, 22(10): 104503 doi: 10.1088/1674-1056/22/10/104503 [12] Zhang Y, Zhai XH. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dynamics, 2015, 81(1-2): 469-480 doi: 10.1007/s11071-015-2005-5 [13] 张毅. 相空间中非保守系统的Herglotz广义变分原理及其Noether定理. 力学学报, 2016, 48(6): 1382-1389 (Zhang Yi. Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether’s theorem. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1382-1389 (in Chinese) doi: 10.6052/0459-1879-16-086 [14] Atanacković TM, Janev M, Pilipović S. Noether’s theorem for variational problems of Herglotz type with real and complex order fractional derivatives. Acta Mechanica, 2021, 232(3): 1131-1146 doi: 10.1007/s00707-020-02893-3 [15] 张毅. Caputo导数下分数阶Birkhoff系统的准对称性与分数阶Noether定理. 力学学报, 2017, 49(3): 693-702 (Zhang Yi. Quasi-symmetry and Noether’s theorem for fractional Birkhoffian systems in terms of Caputo derivatives. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 693-702 (in Chinese) doi: 10.6052/0459-1879-16-350 [16] Zhang HB, Chen HB. Noether’s theorem of Hamiltonian systems with generalized fractional derivative operators. International Journal of Non-Linear Mechanics, 2018, 107: 34-41 doi: 10.1016/j.ijnonlinmec.2018.10.013 [17] Lazo MJ, Paiva J, Frederico GSF. Noether theorem for action-dependent Lagrangian functions: conservation laws for non-conservative system. Nonlinear Dynamics, 2019, 97: 1125-1136 doi: 10.1007/s11071-019-05036-z [18] Zhang LJ, Zhang Y. Non-standard Birkhoffian dynamics and its Noether's theorems. Communications in Nonlinear Science and Numerical Simulation, 2020, 91: 105435 doi: 10.1016/j.cnsns.2020.105435 [19] 张毅. 弱非线性动力学方程的Noether准对称性与近似Noether守恒量. 力学学报, 2020, 52(6): 1765-1773 (Zhang Yi. Noether quasi-symmetry and approximate Noether conservation laws for weakly nonlinear dynamical equations. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1765-1773 (in Chinese) doi: 10.6052/0459-1879-20-242 [20] 梅凤翔. 关于Noether定理——分析力学札记之三十. 力学与实践, 2020, 42(1): 66-74 (Mei Fengxiang. On the Noether’s theorem. Mechanics in Engineering, 2020, 42(1): 66-74 (in Chinese) doi: 10.6052/1000-0879-19-332 [21] 梅凤翔. 约束力学系统的对称性与守恒量. 北京: 北京理工大学出版社, 2004(Mei FX. Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing: Beijing Institute of Technology Press, 2004 (in Chinese)) [22] Luo SK, Dai Y, Zhang XT, et al. A new method of fractional dynamics, i.e., fractional Mei symmetrical method for finding conserved quantity, and its applications to physics. International Journal of Theoretical Physics, 2016, 55(10): 4298-4309 doi: 10.1007/s10773-016-3055-2 [23] Wang P, Xue Y. Conformal invariance of Mei symmetry and conserved quantities of Lagrange equation of thin elastic rod. Nonlinear Dynamics, 2016, 83(4): 1815-1822 doi: 10.1007/s11071-015-2448-8 [24] Wu HB, Mei FX. Form invariance and conserved quantity for weakly nonholonomic system. Applied Mathematics and Mechanics (English Edition) , 2014, 35(10): 1293-1300 doi: 10.1007/s10483-014-1863-9 [25] Jiang WA, Liu K, Xia ZW, et al. Mei symmetry and new conserved quantities for non-material volumes. Acta Mechanica, 2018, 229(9): 3781-3786 doi: 10.1007/s00707-018-2200-9 [26] Zhang Y, Wang XP. Mei symmetry and invariants of quasi-fractional dynamical systems with non-standard Lagrangians. Symmetry, 2019, 11: 1061 doi: 10.3390/sym11081061 [27] Zhai XH, Zhang Y. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Physica Polonica A, 2019, 136(3): 439-443 doi: 10.12693/APhysPolA.136.439 [28] Zhang Y. Mei's symmetry theorem for time scales nonshifted mechanical systems. Theoretical and Applied Mechanics Letters, https://doi.org/10.1016/j.taml.2021.100286 [29] Lutzky M. Dynamical symmetries and conserved quantities. Journal of Physics A: Mathematical and General, 1979, 12(7): 973-981 doi: 10.1088/0305-4470/12/7/012 [30] Hojman SA. A new conservation law constructed without using either Lagrangians or Hamiltonians. Journal of Physics A:Mathematical and General, 1992, 25(7): L291-L295 doi: 10.1088/0305-4470/25/7/002 [31] Hilger S. Analysis on measure chains - A unified approach to continuous and discrete calculus. Results in Mathematics, 1990, 18(1-2): 18-56 doi: 10.1007/BF03323153 [32] Bohner M, Peterson A. Dynamic Equations on Time Scales. Boston: Birkhäuser, 2001 [33] Bohner M, Georgiev SG. Multivariable Dynamic Calculus on Time Scales. Switzerland: Springer International Publishing AG, 2016 [34] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003 [35] Bartosiewicz Z, Torres DFM. Noether's theorem on time scales. Journal of Mathematical Analysis and Applications, 2008, 342(2): 1220-1226 doi: 10.1016/j.jmaa.2008.01.018 [36] Martins N, Torres DFM. Noether's symmetry theorem for nabla problems of the calculus of variations. Applied Mathematics Letters, 2010, 23(12): 1432-1438 doi: 10.1016/j.aml.2010.07.013 [37] Bourdin L. Nonshifted calculus of variations on time scales with $ {\nabla} $ -differentiable σ. Journal of Mathematical Analysis and Applications, 2014, 411(2): 543-554 doi: 10.1016/j.jmaa.2013.10.013[38] Chen JY, Zhang Y. Time-scale version of generalized Birkhoffian mechanics and its symmetries and conserved quantities of Noether type. Advances in Mathematical Physics, 2021, 2021: 9982975 [39] Tian X, Zhang Y. Time-scales Herglotz type Noether theorem for delta derivatives of Birkhoffian systems. Royal Society Open Science, 2019, 6(11): 191248 doi: 10.1098/rsos.191248 [40] Anerot B, Cresson J, Belgacem KH, et al. Noether's-type theorems on time scales. Journal of Mathematical Physics, 2020, 61: 113502 doi: 10.1063/1.5140201 [41] Song CJ, Cheng Y. Noether’s theorems for nonshifted dynamic systems on time scales. Applied Mathematics and Computation, 2020, 374: 125086 doi: 10.1016/j.amc.2020.125086 [42] 田雪, 张毅. Caputo△型分数阶时间尺度Noether定理. 力学学报, 2021, 53(7): 2010-2022 (Tian Xue, Zhang Yi. Caputo △-type fractional time-scales Noether theorem. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2010-2022 (in Chinese) doi: 10.6052/0459-1879-21-108 [43] Cai PP, Fu JL, Guo YX. Lie symmetries and conserved quantities of the constraint mechanical systems on time scales. Reports on Mechanical Physics, 2017, 79(3): 279-298 doi: 10.1016/S0034-4877(17)30045-9 [44] Zhai XH, Zhang Y. Lie symmetry analysis on time scales and its application on mechanical systems. Journal of Vibration and Control, 2019, 25(3): 581-592 doi: 10.1177/1077546318790864 [45] Zhang Y. Lie symmetry and invariants for a generalized Birkhoffian system on time scales. Chaos, Solitons and Fractals, 2019, 128: 306-312 doi: 10.1016/j.chaos.2019.08.014 [46] Zhang Y. Adiabatic invariants and Lie symmetries on time scales for nonholonomic systems of non-Chetaev type. Acta Mechanica, 2020, 231(1): 293-303 doi: 10.1007/s00707-019-02524-6 -