EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用摩擦纳米发电机的流体能量俘获研究新进展

李申芳 王军雷 王中林

李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927 doi: 10.6052/0459-1879-21-411
引用本文: 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927 doi: 10.6052/0459-1879-21-411
Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 doi: 10.6052/0459-1879-21-411
Citation: Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 doi: 10.6052/0459-1879-21-411

利用摩擦纳米发电机的流体能量俘获研究新进展

doi: 10.6052/0459-1879-21-411
基金项目: 国家自然科学基金资助项目(51977196)
详细信息
    作者简介:

    王军雷, 教授, 主要研究方向: 环境能量俘获, 流致振动抑制及利用. E-mail: jlwang@zzu.edu.cn

  • 中图分类号: TK79,TK89

PROGRESSION ON FLUID ENERGY HARVESTING BASED ON TRIBOELECTRIC NANOGENERATORS

  • 摘要: 环境中的流体 (包括气体和液体) 动能是十分丰富且重要的清洁能源之一, 流体能量可通过不同的能量俘获技术 (电磁发电技术、压电能量俘获技术) 被转化为电能并供人们使用. 自2012年王中林研究团队发明摩擦纳米发电机 (triboelectric nanogenerator, TENG) 以来, TENG已成为了最重要的能量, 俘获技术之一, 并应用于流体能量俘获研究中. 论文综述了当前用于流体能量俘获的摩擦纳米发电机 (fluidic energy harvesting TENG, FEH-TENG) 的研究现状. 介绍了 FEH-TENG 中摩擦电材料之间的电荷转移原理以及基本的工作模式. 在气流动能俘获方面, 流致振动 (如涡激振动、驰振、颤振和尾流驰振等)是一种有效的将流体动力转化为机械能的物理机制, 基于该机制, 总结了FEH-TENG在风能和流致振动能量俘获中的研究进展以及各类能量俘获结构. 液体动能俘获方面总结了 FEH-TENG 在波浪和雨滴能量俘获中的研究进展. 介绍了基于 FEH-TENG的混合能量俘获系统和摩擦电材料优化在提升FEH-TENG流体能量俘获效率方面的研究. 接着介绍了FEH-TENG在不同领域中的应用. 最后讨论了目前 FEH-TENG 在流体能量俘获中存在的问题并提出了一些展望. 论文工作有助于推动FEH-TENG在流体能量俘获领域的发展以及促进相关研究人员对该领域的认识.

     

  • 图  1  电荷转移的表面状态模型[40]

    Figure  1.  Surface states model of charge transfer[40]

    图  2  一般材料接触起电的电子云−势阱模型[41]

    Figure  2.  An electron-cloud–potential-well model of general material contact charged[41]

    图  3  同种材料间的接触起电机理[42]

    Figure  3.  Contact charging mechanism between the same material[42]

    图  4  摩擦纳米发电机的四种基本工作模式[43-45]. (a) 接触分离模式, (b) 单电极模式, (c) 横向滑动模式, (d) 独立模式, (e) 蝶形摩擦纳米发电机[46], (f) 滴液摩擦纳米发电机测试系统[47], (g) 滑纸型摩擦纳米发电机[48], (h) 球形摩擦电纳米发电机[51]

    Figure  4.  Four basic working modes of the TENG[43-45]. (a) Contact-separation mode, (b) single-electrode mode, (c) lateral sliding mode, (d) freestanding mode, (e) butterfly-inspired TENG[46], (f) water droplet-driven TENG measuring system[47], (g) sliding paper TENG[48], (h) spherical TENG[51]

    图  5  液液型摩擦纳米发电机[52]

    Figure  5.  The TENG with liquid-liquid contact interface[52]

    图  6  自然风能俘获的摩擦纳米发电机

    Figure  6.  The natural wind energy collected by TENG

    图  7  流致振动能俘获

    Figure  7.  The flow-induced vibration energy collection

    图  8  (a)-(c) 水波能和(d) 液滴能俘获的摩擦纳米发电机. (a) 折纸式摩擦纳米发电机及其输出功率[79], (b) 弹簧辅助式多层结构球形摩擦纳米发电机及其输出特性[80], (c)圆柱型摩擦纳米发电机[84], (d)滴液式摩擦纳米发电机及其优化设计与输出性能[85]

    Figure  8.  (a)-(c) The wave and (d) droplet energy collected by TENG. (a) the origami-inspired TENG and its output power[79], (b) the spherical TENG with spring-assisted multilayered structure and its output performances[80], (c) the cylindrical TENG[84], and (d) the L-TENG and its optimal design scheme and output performance[85]

    图  9  混合式摩擦纳米发电机. (a) 混合压电−摩擦纳米发电机俘获波浪冲击能[94],(b) 柔性混合压电-摩擦纳米发电机及不同滴液频率时输出特性[95],(c) 双晶片压电纳米发电机与摩擦纳米发电机构成的风能俘获器[96],(d) 混合电磁与摩擦纳米发电机水波能俘获器[97],(e) 混合电磁与摩擦纳米发电机风能俘获器[98]

    Figure  9.  The TENG with hybrid energy collection modes. (a) The collection of wave impact energy by hybrid Piezo-triboelectric nanogenerator[94], (b) a flexible hybrid Piezo-triboelectric nanogenerator and its output characteristics with different droplet frequencies[95], (c) a wind energy collector with bimorph-based piezoelectric and TENG[96], (d) a water wave energy collector with EMG and TENG[97], and (e) a wind energy collector with EMG and TENG[98]

    10  (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121]

    10.  (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121]

    图  10  (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121] (续)

    Figure  10.  (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121] (continued)

    表  1  FEH-TENG气流动能俘获研究总结

    Table  1.   Research summary of air-flow energy collection by FEH-TENG

    No.AuthorsModeMaterialOpen-circuit
    voltage/V
    Short-circuit currentPeak power/power
    density (resistance)
    Excitation
    type
    Excitation
    value
    1 Ref. [60] contact-separation Al+PTFE 3.5 300 nA 0.64 mW/m2 (5 MΩ) wind 0.05 MPa
    2 Ref. [53] contact-separation and
    lateral sliding
    Al+PTFE 360 (Vocpp) 130 A (Iscpp) 245 mW (2 kΩ) wind 6 m/s
    3 Ref. [57] freestanding Cu+FEP 500 15 μA 200 nC wind
    4 Ref. [55] contact-separation Al+FEP 1150 7.5 μA 0.95 mW (108 Ω) wind 1.8 m/s
    5 Ref. [54] freestanding Al+FEP 120 40 μA 0.82 mW/26 mW/m2
    (4 MΩ, 12 units in parallel)
    wind 25 m/s
    6 Ref. [61] contact-separation Al/FEP+AgNWs NFs 20 mW/m3 † wind 0.7 - 6 m/s
    7 Ref. [49] freestanding Cu+PTFE 1190 25 μA 9.1 mW (56 MΩ) wind 2.7 m/s
    8 Ref. [65] contact-separation AgNWs NFs+FEP 190* 23 μA* FIV 2.5 m/s
    9 Ref. [70] freestanding Carbon+PET 20.8 6.8 μA 36.72 μW/0.0408 mW/cm3 (5 MΩ) FIV 7.5 m/s
    10 Ref. [64] contact-separation Al+PTFE 270 7.6 μA 1.3 mW (44 MΩ) FIV 2.9 m/s
    11 Ref. [75] contact-separation Nylon+FEP 220 7 μA 7.9 μW (50 MΩ) FIV 2.0 m/s
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标*表示文献图中的近似值, 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript * indicates the approximate value in the literature chart, and the superscript indicates the average value.
    下载: 导出CSV

    表  2  FEH-TENG液体动能俘获研究总结

    Table  2.   Research summary of liquids energy collection by FEH-TENG

    No.AuthorsModeMaterialOpen-circuit
    voltage/V
    Short-circuit
    current
    Peak power/power
    density (resistance)
    Excitation
    type
    Excitation
    value
    1 Ref. [84] freestanding Cu+FEP 120 1.52 μA 110 μW/231.6 mW/m3 (100 MΩ) wave 0.033 Hz
    2 Ref. [76] contact-separation Cu+FEP 419 56.7 μA 4.1 mW (10 MΩ) wave 1.0 Hz
    3 Ref. [31] freestanding Al+FEP 1100 50 μA 5.2 mW/6.6 W/m3
    (20 MΩ)
    wave 1.75 Hz
    4 Ref. [79] contact-separation Cu+FEP 1004 (Vocpp) 110 μA 11.2 mW (6.28 MΩ) impulse excitation 9.3 g
    55.4 μW (60 MΩ) wave 2 Hz
    5 Ref. [80] contact-separation Cu+FEP 250 200 μA 8.5 mW/4.81 W/m3
    (1 MΩ)
    wave 1.0 Hz
    6 Ref. [32] freestanding water+PTFE/ZnO 16 10 μA droplet continuous
    7 Ref. [86] contact-separation Cu+PTFE 21.6 16 W (1 MΩ) droplet (6 mm) single
    8 Ref. [87] single-electrode water+PTFE 68.1 84.8 μA droplet (120 μL) single
    9 Ref. [88] contact-separation Cu+PTFE 42.2 95.4 A droplet 22 mL/s
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript indicates the average value.
    下载: 导出CSV

    表  3  混合式FEH-TENG能量俘获研究总结

    Table  3.   Summary of hybrid FEH-TENG energy harvesting

    No.AuthorsModeMaterialOpen-circuit voltage/VShort-circuit currentPeak power/power density (resistance)Excitation typeExcitation value
    1 Ref. [93] TENG Al+PTEF 360 (Vocpp) 128 A (Iscpp) 1.67 mW (10 MΩ) wind 6 m/s
    PENG Cu+PVDF 65 (Vocpp) 135 A (Iscpp) 1.38 mW (330 KΩ)
    EMG magnet+copper coil 23.2 (Vocpp) 87 mA (Iscpp) 268.6 mW (180 Ω)
    2 Ref. [98] TENG nylon+FEP 683 (Vocpp) 1.8 mW/2.7 W/cm2 (60 MΩ) wind 12 m/s
    EMG magnet+copper coil 47.4 (Vocpp) 62 mW (660 Ω)
    3 Ref. [99] TENG water+FEP 5 droplet single
    TENG Al+PTEF 50 6 μA wind 13 m/s
    solar cell 4.2 27 μA solar 900
    4 Ref. [95] PENG Mo+AlN 1.5 (Vocpp) 9 mW/m2 (104 kΩ) droplet 3.33 mL/s
    TENG Ti/Au+parylene C
    5 Ref. [100] TENG water+sino-fluorine 2.6 μW/cm2 droplet 30 μL
    PENG (pyroelectricity) silver+PVDF+silver 27 temperature difference 40 ℃
    6 Ref. [101] TENG Al+PTFE 760 4 μA 55 mW/m2 (353 MΩ) wave 0.8 Hz
    EMG magnet+copper coil 2 10 mA
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript indicates the average value.
    下载: 导出CSV
  • [1] Wang ZL, Wang AC. On the origin of contact-electrification. Materials Today, 2019, 30: 34-51 doi: 10.1016/j.mattod.2019.05.016
    [2] Wang ZL. From contact-electrification to triboelectric nanogenerators.Reports on Progress in Physics, 2021, 84(9): 096502
    [3] Lin S, Chen X, Wang ZL. Contact electrification at the liquid–solidinterface. Chemical Reviews, 2021, in press, https://doi.org/10.1021/acs.chemrev.1c00176
    [4] Wang ZL. On the first principle theory of nanogenerators from maxwell's equations. Nano Energy, 2020, 68: 104272 doi: 10.1016/j.nanoen.2019.104272
    [5] Lai Z, Wang S, Zhu L, et al. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 2021, 150: 107212 doi: 10.1016/j.ymssp.2020.107212
    [6] Li S, Crovetto A, Peng Z, et al. Bi-resonant structure with piezoelectric pvdf films for energy harvesting from random vibration sources at low frequency. Sensors and Actuators A: Physical, 2016, 247: 547-554 doi: 10.1016/j.sna.2016.06.033
    [7] Mairizwan, AR, Satria DW. Optimization of harvesting solar cell energy based on mppt to be applied during the rainy seasonin the tropics. Journal of Physics: Conference Series, 2020, 1481: 012007 doi: 10.1088/1742-6596/1481/1/012007
    [8] Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science, 2020, 368(6495): 1091-1098 doi: 10.1126/science.aaz5045
    [9] Zhang L, Dai H, Abdelkefi A, et al. Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Applied Energy, 2019, 254: 113737 doi: 10.1016/j.apenergy.2019.113737
    [10] Javed U, Abdelkefi A. Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations. Nonlinear Dynamics, 2019, 95(4): 3309-3333 doi: 10.1007/s11071-018-04757-x
    [11] Lu Z, Wen Q, He X, et al. A flutter-based electromagnetic wind energy harvester: Theory and experiments. Applied Sciences, 2019, 9(22): 4823 doi: 10.3390/app9224823
    [12] Le HD, Kwon SD. An electromagnetic galloping energy harvester with double magnet design. Applied Physics Letters, 2019, 115(13): 133901 doi: 10.1063/1.5118271
    [13] Khan FU, Iqbal M. Electromagnetic bridge energy harvester utilizing bridge’s vibrations and ambient wind for wireless sensor node application. Journal of Sensors, 2018, 2018: 3849683
    [14] 王琼, 黄良沛, 周程峰等. 曲面驰振风能采集器动力学设计与性能研究. 振动工程学报, http://kns.cnki.net/kcms/detail/32.1349.TB.20210611.1101.004.html

    Wang Qiong, Huang Liangpei, Zhou Chengfeng, et al. Dynamic design and performance research of curved surface galloping wind energy harvester. Journal of Vibration Engineerin, https://kns.cnki.net /kcms/detail/32.1349.TB.20210611.1101.004.html (in Chinese))
    [15] Sun W, Seok J. Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity. Mechanical Systems and Signal Processing, 2021, 152: 107477 doi: 10.1016/j.ymssp.2020.107477
    [16] Su WJ, Lin WY. Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester. International Journal of Mechanical Sciences, 2020, 173: 105457 doi: 10.1016/j.ijmecsci.2020.105457
    [17] Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034
    [18] Jia J, Shan X, Upadrashta D, et al. An asymmetric bending-torsional piezoelectric energy harvester at low wind speed. Energy, 2020, 198: 117287 doi: 10.1016/j.energy.2020.117287
    [19] Zhang J, Fang Z, Shu C, et al. A rotational piezoelectric energy harvester for efficient wind energy harvesting. Sensors and Actuators A:Physical, 2017, 262: 123-129 doi: 10.1016/j.sna.2017.05.027
    [20] Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328-334 doi: 10.1016/j.nanoen.2012.01.004
    [21] Jiang Q, Chen B, Yang Y. Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. Acs Applied Energy Materials, 2018, 1(8): 4269-4276 doi: 10.1021/acsaem.8b00902
    [22] Su Y, Xie G, Xie F, et al. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor. Chemical Physics Letters, 2016, 653: 96-100 doi: 10.1016/j.cplett.2016.04.080
    [23] Ren X, Fan H, Wang C, et al. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind. Smart Materials and Structures, 2018, 27(6): 065016 doi: 10.1088/1361-665X/aabe04
    [24] Ren X, Fan H, Wang C, et al. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy, 2018, 50: 562-570 doi: 10.1016/j.nanoen.2018.06.002
    [25] Park SJ, Lee SH, Seol ML, et al. Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy, 2019, 55: 115-122 doi: 10.1016/j.nanoen.2018.10.063
    [26] Jiang Q, Chen B, Zhang K, et al. Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. Acs Applied Materials & Interfaces, 2017, 9(50): 43716-43723
    [27] Wang J, Tang L, Zhao L, et al. Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. International Journal of Energy Research, 2020, 44(6): 4516-4528 doi: 10.1002/er.5228
    [28] Wang J, Gu S, Zhang C, et al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 2020, 213: 112835 doi: 10.1016/j.enconman.2020.112835
    [29] 练继建, 燕翔, 刘昉等. 流致振动发电的效率. 哈尔滨工程大学学报, 2017, 38(10): 1545-1553 (Lian Jijian, Yan Xiang, Liu Fang, et al. Power generating efficiency of flow-induced vibration. Journal of Harbin Engineering Universit, 2017, 38(10): 1545-1553 (in Chinese)
    [30] Hu J, Pu X, Yang H, et al. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018-3023 doi: 10.1007/s12274-019-2545-y
    [31] Rui P, Zhang W, Zhong Y, et al. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy, 2020, 74: 104937 doi: 10.1016/j.nanoen.2020.104937
    [32] Lee JH, Kim S, Kim TY, et al. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58: 579-584 doi: 10.1016/j.nanoen.2019.01.078
    [33] Liu W, Xu L, Liu G, et al. Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy. Iscience, 2020, 23(12): 101848 doi: 10.1016/j.isci.2020.101848
    [34] Nam GH, Ahn JH, Lee GH, et al. A new pathway for liquid–solid triboelectric nanogenerator using streaming flow by a novel direct charge transfer. Advanced Energy and Sustainability Research, 2020, 1(1): 2000031 doi: 10.1002/aesr.202000031
    [35] Duan Y, Duan J, Zhao Y, et al. Self-powered low-platinum nanorod alloy monoelectrodes for rain energy harvest. Energy Technology, 2018, 6(9): 1606-1609 doi: 10.1002/ente.201700865
    [36] Wang S, Wang Y, Liu D, et al. A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing. Sensors and Actuators A: Physical, 2021, 317: 112459 doi: 10.1016/j.sna.2020.112459
    [37] Jiang T, Pang H, An J, et al. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Advanced Energy Materials, 2020, 10(23): 2000064 doi: 10.1002/aenm.202000064
    [38] Helseth LE. A water droplet-powered sensor based on charge transfer to a flow-through front surface electrode. Nano Energy, 2020, 73: 104809 doi: 10.1016/j.nanoen.2020.104809
    [39] Jiang D, Liu G, Li W, et al. A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting. IEEE Transactions on Power Electronics, 2020, 35(1): 25-32 doi: 10.1109/TPEL.2019.2921152
    [40] Zhou L, Liu D, Wang J, et al. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 2020, 8(3): 481-506 doi: 10.1007/s40544-020-0390-3
    [41] Xu C, Zi Y, Wang AC, et al. On the electron-transfer mechanism in the contact-electrification effect. Advanced Materials, 2018, 30(15): 1706790 doi: 10.1002/adma.201706790
    [42] Xu C, Zhang B, Wang AC, et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano, 2019, 13(2): 2034-2041
    [43] Wang ZL. On maxwell's displacement current for energy and sensors: The origin of nanogenerators. Materials Today, 2017, 20(2): 74-82 doi: 10.1016/j.mattod.2016.12.001
    [44] Wang ZL. Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discussions, 2015, 176: 447-458
    [45] Wang Y, Gao S, Xu W, et al. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Advanced Functional Materials, 2020, 30(26): 1908252 doi: 10.1002/adfm.201908252
    [46] Lei R, Zhai H, Nie J, et al. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Advanced Materials Technologies, 2019, 4(3): 1800514 doi: 10.1002/admt.201800514
    [47] Yang L, Wang Y, Guo Y, et al. Robust working mechanism of water droplet-driven triboelectric nanogenerator: Triboelectric output versus dynamic motion of water droplet. Advanced Materials Interfaces, 2019, 6(24): 1901547 doi: 10.1002/admi.201901547
    [48] Xia K, Du C, Zhu Z, et al. Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Applied Materials Today, 2018, 13: 190-197 doi: 10.1016/j.apmt.2018.09.005
    [49] Bi M, Wu Z, Wang S, et al. Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting. Nano Energy, 2020, 75: 104968 doi: 10.1016/j.nanoen.2020.104968
    [50] Lin Z, Zhang B, Guo H, et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908 doi: 10.1016/j.nanoen.2019.103908
    [51] Cheng P, Guo H, Wen Z, et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57: 432-439 doi: 10.1016/j.nanoen.2018.12.054
    [52] Nie J, Wang Z, Ren Z, et al. Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10: 2264 doi: 10.1038/s41467-019-10232-x
    [53] Rahman MT, Salauddin M, Park JY, et al. A natural wind-driven 3d-printed miniaturized and fully enclosed hybrid nanogenerator using flexible blade structure for subway tunnel applications//20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, 2019: 1443-1446
    [54] Lin H, He M, Jing Q, et al. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy, 2019, 56: 269-276 doi: 10.1016/j.nanoen.2018.11.037
    [55] Zhang Y, Zeng Q, Wu Y, et al. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Letters, 2020, 12(1): 175 doi: 10.1007/s40820-020-00513-2
    [56] Gao Q, Li Y, Xie Z, et al. Robust triboelectric nanogenerator with ratchet-like wheel-based design for harvesting of environmental energy. Advanced Materials Technologies, 2020, 5(1): 1900801 doi: 10.1002/admt.201900801
    [57] Wang Y, Yu X, Yin M, et al. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy, 2021, 82: 105740 doi: 10.1016/j.nanoen.2020.105740
    [58] Liu Y, Liu J, Che L. A high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (tengs). Sensors (Basel, Switzerland) , 2021, 21(9): 2951 doi: 10.3390/s21092951
    [59] Lee JS, Yong H, Choi YI, et al. Stackable disk-shaped triboelectric nanogenerator to generate energy from omnidirectional wind. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, in press, https://doi.org/10.1007/s40684-021-00340-9
    [60] Zaw NYW, Roh H, Kim I, et al. Omnidirectional triboelectric nanogenerator operated by weak wind towards a self-powered anemoscope. Micromachines, 2020, 11(4): 414 doi: 10.3390/mi11040414
    [61] Ren Z, Wang Z, Liu Z, et al. Energy harvesting from breeze wind (0.7-6 m s(−1)) using ultra-stretchable triboelectric nanogenerator. Advanced Energy Materials, 2020, 10 (36): 2001770
    [62] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902 doi: 10.1016/j.apenergy.2020.114902
    [63] 段松长, 赵西增, 叶洲腾等. 错列角度对双圆柱涡激振动影响的数值模拟研究. 力学学报, 2018, 50(2): 244-253 (Duan Songchang, Zhao Xizeng, Ye Zhouteng, et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244-253 (in Chinese)
    [64] Zeng Q, Wu Y, Tang Q, et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy, 2020, 70: 104524 doi: 10.1016/j.nanoen.2020.104524
    [65] Ren Z, Wang Z, Wang F, et al. Vibration behavior and excitation mechanism of ultra-stretchable triboelectric nanogenerator for wind energy harvesting. Extreme Mechanics Letters, 2021, 45: 101285 doi: 10.1016/j.eml.2021.101285
    [66] Bashir M, Rajendran P, Khan SA. Energy harvesting from aerodynamic instabilities: Current prospect and future trends. IOP Conference Series: Materials Science and Engineering, 2018, 290: 012054 doi: 10.1088/1757-899X/290/1/012054
    [67] Wang Q, Zou HX, Zhao LC, et al. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Applied Physics Letters, 2020, 117(4): 043902 doi: 10.1063/5.0014484
    [68] Wen Q, He X, Lu Z, et al. A comprehensive review of miniatured wind energy harvesters. Nano Materials Science, 2021, 3(2): 170-185 doi: 10.1016/j.nanoms.2021.04.001
    [69] Zhao Z, Pu X, Du C, et al. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. Acs Nano, 2016, 10(2): 1780-1787 doi: 10.1021/acsnano.5b07157
    [70] Wang Y, Yang E, Chen T, et al. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 2020, 78: 105279 doi: 10.1016/j.nanoen.2020.105279
    [71] 夏杨, 彭争春, 张岚斌等. 一种采集风能的多层薄膜颤振混合纳米发电机. 微纳电子技术, 2020, 57(2): 136-141+168 (Xia Yang, Peng Zhengchun, Zhang Lanbin, et al. A multilayer film flutter hybrid nanogenerator for harvesting the wind energy. Micronanoelectronic Technology, 2020, 57(2): 136-141+168 (in Chinese)
    [72] Trung KP, Wang S, Wang Y, et al. A self-powered and low pressure loss gas flowmeter based on fluid-elastic flutter driven triboelectric nanogenerator. Sensors, 2020, 20(3): 729 doi: 10.3390/s20030729
    [73] Wijewardhana KR, Shen TZ, Jayaweera EN, et al. Hybrid nanogenerator and enhancement of water-solid contact electrification using triboelectric charge supplier. Nano Energy, 2018, 52: 402-407 doi: 10.1016/j.nanoen.2018.08.016
    [74] 杨恩, 王岩, 王建业等. 基于薄膜拍打型摩擦纳米发电机的风能收集研究. 中国科学:技术科学, 2021: 1-15 (Yang En, Wang Yan, Wang Jianye, et al. Research on a film-flapping triboelectric nanogenerator for wind energy harvesting. Scientia Sinica Technologica, 2021: 1-15 (in Chinese)
    [75] Zhang L, Meng B, Xia Y, et al. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy, 2020, 70: 104477 doi: 10.1016/j.nanoen.2020.104477
    [76] Kim WG, Kim DW, Tcho IW, et al. Triboelectric nanogenerator: Structure, mechanism, and applications. Acs Nano, 2021, 15(1): 258-287 doi: 10.1021/acsnano.0c09803
    [77] Liang X, Liu Z, Feng Y, et al. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. nano Energy, 2021, 83: 105836 doi: 10.1016/j.nanoen.2021.105836
    [78] Liu L, Yang X, Zhao L, et al. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano, 2021, 15(6): 9412-9421 doi: 10.1021/acsnano.1c00345
    [79] Lin ZH, Cheng G, Lin L, et al. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angewandte Chemie International Edition, 2013, 52(48): 12545-12549 doi: 10.1002/anie.201307249
    [80] Tao K, Yi H, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197 doi: 10.1016/j.nanoen.2019.104197
    [81] Liang X, Jiang T, Liu G, et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy & Environmental Science, 2020, 13(1): 277-285
    [82] Zhang C, Liu L, Zhou L, et al. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. Acs Nano, 2020, 14(6): 7092-7100 doi: 10.1021/acsnano.0c01827
    [83] Wu Y, Zeng Q, Tang Q, et al. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67: 104205 doi: 10.1016/j.nanoen.2019.104205
    [84] Feng Y, Jiang T, Liang X, et al. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Applied Physics Reviews, 2020, 7(2): 021401 doi: 10.1063/1.5135734
    [85] Zhong W, Xu L, Zhan F, et al. Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. Acs Nano, 2020, 14(8): 10510-10517 doi: 10.1021/acsnano.0c04413
    [86] Nie S, Guo H, Lu Y, et al. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Advanced Materials Technologies, 2020, 5(9): 2000454
    [87] Zhang N, Gu H, Lu K, et al. A universal single electrode droplet-based electricity generator (SE-deg) for water kinetic energy harvesting. Nano Energy, 2021, 82: 105735 doi: 10.1016/j.nanoen.2020.105735
    [88] Liu X, Yu A, Qin A, et al. Highly integrated triboelectric nanogenerator for efficiently harvesting raindrop energy. Advanced Materials Technologies, 2019, 4(11): 1900608 doi: 10.1002/admt.201900608
    [89] Yang L, Wang Y, Zhao Z, et al. Particle-laden droplet-driven triboelectric nanogenerator for real-time sediment monitoring using a deep learning method. Acs Applied Materials & Interfaces, 2020, 12(34): 38192-38201
    [90] Chen CY, Tsai CY, Xu MH, et al. A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polymer Letters, 2019, 13(6): 533-542 doi: 10.3144/expresspolymlett.2019.45
    [91] Chandrasekhar A, Vivekananthan V, Kim SJ. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy, 2020, 69: 104439 doi: 10.1016/j.nanoen.2019.104439
    [92] Fan X, He J, Mu J, et al. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in internet of things and self-powered wind speed sensor. Nano Energy, 2020, 68: 104319 doi: 10.1016/j.nanoen.2019.104319
    [93] Rahman MT, Salauddin M, Maharjan P, et al. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 2019, 57: 256-268 doi: 10.1016/j.nanoen.2018.12.052
    [94] Jurado UT, Pu SH, White NM. Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications. Nano Energy, 2020, 72: 104701 doi: 10.1016/j.nanoen.2020.104701
    [95] Mariello M, Fachechi L, Guido F, et al. Multifunctional sub-100 & micro;m thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible aln and soft parylene c-pdms-ecoflex(tm). Nano Energy, 2021, 83: 105811 doi: 10.1016/j.nanoen.2021.105811
    [96] Zhao C, Zhang Q, Zhang W, et al. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 2019, 57: 440-449 doi: 10.1016/j.nanoen.2018.12.062
    [97] Kim WJ, Vivekananthan V, Khandelwal G, et al. Encapsulated triboelectric-electromagnetic hybrid generator for a sustainable blue energy harvesting and self-powered oil spill detection. Acs Applied Electronic Materials, 2020, 2(10): 3100-3108 doi: 10.1021/acsaelm.0c00302
    [98] Fang Y, Tang T, Li Y, et al. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor iot applications. iScience, 2021, 24(4): 102300 doi: 10.1016/j.isci.2021.102300
    [99] Roh H, Kim I, Kim D. Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions. Nano Energy, 2020, 70: 104515 doi: 10.1016/j.nanoen.2020.104515
    [100] Jiang D, Su Y, Wang K, et al. A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy, 2020, 70: 104459 doi: 10.1016/j.nanoen.2020.104459
    [101] Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature, 2020, 578(7795): 392 doi: 10.1038/s41586-020-1985-6
    [102] Zhang Q, Liang Q, Nandakumar DK, et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12(1): 616 doi: 10.1038/s41467-021-20919-9
    [103] Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nature communications, 2019, 10: 1427 doi: 10.1038/s41467-019-09461-x
    [104] Diaz A, Felix-Navarro R. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics, 2004, 62(4): 277-290 doi: 10.1016/j.elstat.2004.05.005
    [105] Lee JW, Ye BU, Baik JM. Research update: Recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator. APL Materials, 2017, 5(7): 073802 doi: 10.1063/1.4979306
    [106] Nafari A, Sodano HA. Surface morphology effects in a vibration based triboelectric energy harvester. Smart Materials and Structures, 2018, 27(1): 015029 doi: 10.1088/1361-665X/aa9ccb
    [107] Lee JW, Hwang W. Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy, 2018, 52: 315-322 doi: 10.1016/j.nanoen.2018.08.008
    [108] Zhou Q, Kim JN, Han KW, et al. Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-mesh hybrid electrode. Nano Energy, 2019, 59: 120-128 doi: 10.1016/j.nanoen.2019.02.022
    [109] Lai YC, Hsiao YC, Wu HM, et al. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Advanced Science, 2019, 6(5): 1801883 doi: 10.1002/advs.201801883
    [110] 耿魁伟, 徐志平, 李徐. 基于MoS2/Graphene复合材料的摩擦纳米发电机. 华南理工大学学报(自然科学版), 2020, 48(10): 113-119+128 (Geng Kuiwei, Xu Zhiping, Li Xu. Triboelectric nanogenerator based on MoS2/graphene composite. Journal of South China University of Technology (Natural Science Edition), 2020, 48(10): 113-119+128 (in Chinese)
    [111] Ye Q, Wu Y, Qi Y, et al. Effects of liquid metal particles on performance of triboelectric nanogenerator with electrospun polyacrylonitrile fiber films. Nano Energy, 2019, 61: 381-388 doi: 10.1016/j.nanoen.2019.04.075
    [112] Wang L, Yang X, Daoud WA. High power-output mechanical energy harvester based on flexible and transparent au nanoparticle-embedded polymer matrix. Nano Energy, 2019, 55: 433-440 doi: 10.1016/j.nanoen.2018.10.030
    [113] Nie J, Ren Z, Xu L, et al. Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Advanced Materials, 2020, 32(2): 1905696 doi: 10.1002/adma.201905696
    [114] Cheng X, Tang W, Song Y, et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61: 517-532 doi: 10.1016/j.nanoen.2019.04.096
    [115] Sun W, Wang N, Li J, et al. Humidity-resistant triboelectric nanogenerator and its applications in wind energy harvesting and self-powered cathodic protection. Electrochimica Acta, 2021, 391: 138994 doi: 10.1016/j.electacta.2021.138994
    [116] Xiong J, Luo H, Gao D, et al. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy, 2019, 61: 584-593 doi: 10.1016/j.nanoen.2019.04.089
    [117] Cui X, Zhang H, Cao S, et al. Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure. Nano Energy, 2018, 52: 71-77 doi: 10.1016/j.nanoen.2018.07.037
    [118] Han Q, Ding Z, Sun W, et al. Hybrid triboelectric-electromagnetic generator for self-powered wind speed and direction detection. Sustainable Energy Technologies and Assessments, 2020, 39: 100717 doi: 10.1016/j.seta.2020.100717
    [119] Xu S, Feng Y, Liu Y, et al. Gas-solid two-phase flow-driven triboelectric nanogenerator for wind-sand energy harvesting and self-powered monitoring sensor. Nano Energy, 2021, 85: 106023 doi: 10.1016/j.nanoen.2021.106023
    [120] Hu S, Shi Z, Zheng R, et al. Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. Acs Applied Materials & Interfaces, 2020, 12(36): 40021-40030
    [121] Chen P, An J, Shu S, et al. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021, 11(9): 2003066 doi: 10.1002/aenm.202003066
    [122] Liu L, Shi Q, Lee C. A novel hybridized blue energy harvester aiming at all-weather iot applications. Nano Energy, 2020, 76: 105052 doi: 10.1016/j.nanoen.2020.105052
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1870
  • HTML全文浏览量:  638
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-21
  • 录用日期:  2021-10-09
  • 网络出版日期:  2021-10-10
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回