PROGRESSION ON FLUID ENERGY HARVESTING BASED ON TRIBOELECTRIC NANOGENERATORS
-
摘要: 环境中的流体 (包括气体和液体) 动能是十分丰富且重要的清洁能源之一, 流体能量可通过不同的能量俘获技术 (电磁发电技术、压电能量俘获技术) 被转化为电能并供人们使用. 自2012年王中林研究团队发明摩擦纳米发电机 (triboelectric nanogenerator, TENG) 以来, TENG已成为了最重要的能量, 俘获技术之一, 并应用于流体能量俘获研究中. 论文综述了当前用于流体能量俘获的摩擦纳米发电机 (fluidic energy harvesting TENG, FEH-TENG) 的研究现状. 介绍了 FEH-TENG 中摩擦电材料之间的电荷转移原理以及基本的工作模式. 在气流动能俘获方面, 流致振动 (如涡激振动、驰振、颤振和尾流驰振等)是一种有效的将流体动力转化为机械能的物理机制, 基于该机制, 总结了FEH-TENG在风能和流致振动能量俘获中的研究进展以及各类能量俘获结构. 液体动能俘获方面总结了 FEH-TENG 在波浪和雨滴能量俘获中的研究进展. 介绍了基于 FEH-TENG的混合能量俘获系统和摩擦电材料优化在提升FEH-TENG流体能量俘获效率方面的研究. 接着介绍了FEH-TENG在不同领域中的应用. 最后讨论了目前 FEH-TENG 在流体能量俘获中存在的问题并提出了一些展望. 论文工作有助于推动FEH-TENG在流体能量俘获领域的发展以及促进相关研究人员对该领域的认识.Abstract: The fluid mechanical energy including air kinetic energy and liquids kinetic energy in the environment is one of the most abundant and important clean energy. Through different energy harvesting technologies such as electromagnetic power generation technology and piezoelectric energy harvesting technology, the aforementioned clean fluid energy can be successfully converted into electrical energy and used by human. Since the triboelectric nanogenerator (TENG) was invented in 2012 year from the research lab leaded by Zhonglin Wang, the triboelectric nanogenerator has become one of the most important energy harvesting technology and has been applied to fluid mechanical energy harvesting. This paper comprehensively reviews the current research status of energy harvesting by fluidic energy harvesting TENG (FEH-TENG). The principle of charge transfer between triboelectric materials in FEH-TENG and the basic working mode is introduced. On harvesting air kinetic energy, as the mechanism of Flow induced vibrations (such as vortex-induced vibration, gallop, flutter, and wake galloping, etc.) can effectively transfer fluidic energy into mechanical energy, which is quite proper in designing the energy harvesting structure, in this work, the research progress and various energy harvesting structures of FEH-TENG in wind energy and flow-induced vibration energy harvesting are summarized. In the aspect of liquid kinetic energy harvesting, the research work of FEH-TENG utilized in wave and raindrop energy harvesting is also summarized. Furthermore, the research progress of the hybrid energy harvesting system based on FEH-TENG and optimization of triboelectric materials in improving the energy harvesting efficiency of FEH-TENG has been summarized. Then, the application of FEH-TENG in different engineering fields is introduced. Finally, the current existing problems of the FEH-TENG while collecting the fluid mechanical energy in harvesting are discussed and some perspectives for the future development of FEH-TENG are provided. This work is helpful to promote the development of FEH-TENG in the research fields of fluid mechanical energy harvesting and promote the understanding of relevant researchers in this research fields.
-
Key words:
- TENG /
- fluid energy /
- hybrid energy collection /
- triboelectric materials /
- self-power system
-
图 4 摩擦纳米发电机的四种基本工作模式[43-45]. (a) 接触分离模式, (b) 单电极模式, (c) 横向滑动模式, (d) 独立模式, (e) 蝶形摩擦纳米发电机[46], (f) 滴液摩擦纳米发电机测试系统[47], (g) 滑纸型摩擦纳米发电机[48], (h) 球形摩擦电纳米发电机[51]
Figure 4. Four basic working modes of the TENG[43-45]. (a) Contact-separation mode, (b) single-electrode mode, (c) lateral sliding mode, (d) freestanding mode, (e) butterfly-inspired TENG[46], (f) water droplet-driven TENG measuring system[47], (g) sliding paper TENG[48], (h) spherical TENG[51]
图 8 (a)-(c) 水波能和(d) 液滴能俘获的摩擦纳米发电机. (a) 折纸式摩擦纳米发电机及其输出功率[79], (b) 弹簧辅助式多层结构球形摩擦纳米发电机及其输出特性[80], (c)圆柱型摩擦纳米发电机[84], (d)滴液式摩擦纳米发电机及其优化设计与输出性能[85]
Figure 8. (a)-(c) The wave and (d) droplet energy collected by TENG. (a) the origami-inspired TENG and its output power[79], (b) the spherical TENG with spring-assisted multilayered structure and its output performances[80], (c) the cylindrical TENG[84], and (d) the L-TENG and its optimal design scheme and output performance[85]
图 9 混合式摩擦纳米发电机. (a) 混合压电−摩擦纳米发电机俘获波浪冲击能[94],(b) 柔性混合压电-摩擦纳米发电机及不同滴液频率时输出特性[95],(c) 双晶片压电纳米发电机与摩擦纳米发电机构成的风能俘获器[96],(d) 混合电磁与摩擦纳米发电机水波能俘获器[97],(e) 混合电磁与摩擦纳米发电机风能俘获器[98]
Figure 9. The TENG with hybrid energy collection modes. (a) The collection of wave impact energy by hybrid Piezo-triboelectric nanogenerator[94], (b) a flexible hybrid Piezo-triboelectric nanogenerator and its output characteristics with different droplet frequencies[95], (c) a wind energy collector with bimorph-based piezoelectric and TENG[96], (d) a water wave energy collector with EMG and TENG[97], and (e) a wind energy collector with EMG and TENG[98]
10 (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121]
10. (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121]
图 10 (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121] (续)
Figure 10. (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121] (continued)
表 1 FEH-TENG气流动能俘获研究总结
Table 1. Research summary of air-flow energy collection by FEH-TENG
No. Authors Mode Material Open-circuit
voltage/VShort-circuit current Peak power/power
density (resistance)Excitation
typeExcitation
value1 Ref. [60] contact-separation Al+PTFE 3.5 300 nA 0.64 mW/m2 (5 MΩ) wind 0.05 MPa 2 Ref. [53] contact-separation and
lateral slidingAl+PTFE 360 (Vocpp) 130 A (Iscpp) 245 mW (2 kΩ) wind 6 m/s 3 Ref. [57] freestanding Cu+FEP 500 15 μA 200 nC wind − 4 Ref. [55] contact-separation Al+FEP 1150 7.5 μA 0.95 mW (108 Ω) wind 1.8 m/s 5 Ref. [54] freestanding Al+FEP 120 40 μA 0.82 mW/26 mW/m2
(4 MΩ, 12 units in parallel)wind 25 m/s 6 Ref. [61] contact-separation Al/FEP+AgNWs NFs 20 mW/m3 † wind 0.7 - 6 m/s 7 Ref. [49] freestanding Cu+PTFE 1190 25 μA 9.1 mW (56 MΩ) wind 2.7 m/s 8 Ref. [65] contact-separation AgNWs NFs+FEP 190* 23 μA* − FIV 2.5 m/s 9 Ref. [70] freestanding Carbon+PET 20.8 6.8 μA 36.72 μW/0.0408 mW/cm3 (5 MΩ) FIV 7.5 m/s 10 Ref. [64] contact-separation Al+PTFE 270 7.6 μA 1.3 mW (44 MΩ) FIV 2.9 m/s 11 Ref. [75] contact-separation Nylon+FEP 220 7 μA 7.9 μW† (50 MΩ) FIV 2.0 m/s 注:Vocpp和Iscpp表示峰峰之间的最大开路电压和短路电流. 上标*表示文献图中的近似值, 上标†表示平均值.
Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript * indicates the approximate value in the literature chart, and the superscript † indicates the average value.表 2 FEH-TENG液体动能俘获研究总结
Table 2. Research summary of liquids energy collection by FEH-TENG
No. Authors Mode Material Open-circuit
voltage/VShort-circuit
currentPeak power/power
density (resistance)Excitation
typeExcitation
value1 Ref. [84] freestanding Cu+FEP 120 1.52 μA 110 μW/231.6 mW/m3 (100 MΩ) wave 0.033 Hz 2 Ref. [76] contact-separation Cu+FEP 419 56.7 μA 4.1 mW (10 MΩ) wave 1.0 Hz 3 Ref. [31] freestanding Al+FEP 1100 50 μA 5.2 mW†/6.6 W/m3 †
(20 MΩ)wave 1.75 Hz 4 Ref. [79] contact-separation Cu+FEP 1004 (Vocpp) 110 μA 11.2 mW (6.28 MΩ) impulse excitation 9.3 g − − 55.4 μW (60 MΩ) wave 2 Hz 5 Ref. [80] contact-separation Cu+FEP 250 200 μA 8.5 mW/4.81 W/m3
(1 MΩ)wave 1.0 Hz 6 Ref. [32] freestanding water+PTFE/ZnO 16 10 μA − droplet continuous 7 Ref. [86] contact-separation Cu+PTFE 21.6 − 16 W (1 MΩ) droplet (6 mm) single 8 Ref. [87] single-electrode water+PTFE 68.1 84.8 μA − droplet (120 μL) single 9 Ref. [88] contact-separation Cu+PTFE 42.2 95.4 A − droplet 22 mL/s 注:Vocpp和Iscpp表示峰峰之间的最大开路电压和短路电流. 上标†表示平均值.
Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript † indicates the average value.表 3 混合式FEH-TENG能量俘获研究总结
Table 3. Summary of hybrid FEH-TENG energy harvesting
No. Authors Mode Material Open-circuit voltage/V Short-circuit current Peak power/power density (resistance) Excitation type Excitation value 1 Ref. [93] TENG Al+PTEF 360 (Vocpp) 128 A (Iscpp) 1.67 mW (10 MΩ) wind 6 m/s PENG Cu+PVDF 65 (Vocpp) 135 A (Iscpp) 1.38 mW (330 KΩ) EMG magnet+copper coil 23.2 (Vocpp) 87 mA (Iscpp) 268.6 mW (180 Ω) 2 Ref. [98] TENG nylon+FEP 683 (Vocpp) − 1.8 mW/2.7 W/cm2 (60 MΩ) wind 12 m/s EMG magnet+copper coil 47.4 (Vocpp) − 62 mW (660 Ω) 3 Ref. [99] TENG water+FEP 5 − − droplet single TENG Al+PTEF 50 6 μA − wind 13 m/s solar cell 4.2 27 μA − solar 900 4 Ref. [95] PENG Mo+AlN 1.5 (Vocpp) − 9 mW/m2 (104 kΩ) droplet 3.33 mL/s TENG Ti/Au+parylene C 5 Ref. [100] TENG water+sino-fluorine − − 2.6 μW/cm2 droplet 30 μL PENG (pyroelectricity) silver+PVDF+silver 27† − temperature difference 40 ℃ 6 Ref. [101] TENG Al+PTFE 760 4 μA 55 mW/m2 (353 MΩ) wave 0.8 Hz EMG magnet+copper coil 2 10 mA − 注:Vocpp和Iscpp表示峰峰之间的最大开路电压和短路电流. 上标†表示平均值.
Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript † indicates the average value. -
[1] Wang ZL, Wang AC. On the origin of contact-electrification. Materials Today, 2019, 30: 34-51 doi: 10.1016/j.mattod.2019.05.016 [2] Wang ZL. From contact-electrification to triboelectric nanogenerators.Reports on Progress in Physics, 2021, 84(9): 096502 [3] Lin S, Chen X, Wang ZL. Contact electrification at the liquid–solidinterface. Chemical Reviews, 2021, in press, https://doi.org/10.1021/acs.chemrev.1c00176 [4] Wang ZL. On the first principle theory of nanogenerators from maxwell's equations. Nano Energy, 2020, 68: 104272 doi: 10.1016/j.nanoen.2019.104272 [5] Lai Z, Wang S, Zhu L, et al. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 2021, 150: 107212 doi: 10.1016/j.ymssp.2020.107212 [6] Li S, Crovetto A, Peng Z, et al. Bi-resonant structure with piezoelectric pvdf films for energy harvesting from random vibration sources at low frequency. Sensors and Actuators A: Physical, 2016, 247: 547-554 doi: 10.1016/j.sna.2016.06.033 [7] Mairizwan, AR, Satria DW. Optimization of harvesting solar cell energy based on mppt to be applied during the rainy seasonin the tropics. Journal of Physics: Conference Series, 2020, 1481: 012007 doi: 10.1088/1742-6596/1481/1/012007 [8] Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science, 2020, 368(6495): 1091-1098 doi: 10.1126/science.aaz5045 [9] Zhang L, Dai H, Abdelkefi A, et al. Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Applied Energy, 2019, 254: 113737 doi: 10.1016/j.apenergy.2019.113737 [10] Javed U, Abdelkefi A. Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations. Nonlinear Dynamics, 2019, 95(4): 3309-3333 doi: 10.1007/s11071-018-04757-x [11] Lu Z, Wen Q, He X, et al. A flutter-based electromagnetic wind energy harvester: Theory and experiments. Applied Sciences, 2019, 9(22): 4823 doi: 10.3390/app9224823 [12] Le HD, Kwon SD. An electromagnetic galloping energy harvester with double magnet design. Applied Physics Letters, 2019, 115(13): 133901 doi: 10.1063/1.5118271 [13] Khan FU, Iqbal M. Electromagnetic bridge energy harvester utilizing bridge’s vibrations and ambient wind for wireless sensor node application. Journal of Sensors, 2018, 2018: 3849683 [14] 王琼, 黄良沛, 周程峰等. 曲面驰振风能采集器动力学设计与性能研究. 振动工程学报, http://kns.cnki.net/kcms/detail/32.1349.TB.20210611.1101.004.htmlWang Qiong, Huang Liangpei, Zhou Chengfeng, et al. Dynamic design and performance research of curved surface galloping wind energy harvester. Journal of Vibration Engineerin, https://kns.cnki.net /kcms/detail/32.1349.TB.20210611.1101.004.html (in Chinese)) [15] Sun W, Seok J. Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity. Mechanical Systems and Signal Processing, 2021, 152: 107477 doi: 10.1016/j.ymssp.2020.107477 [16] Su WJ, Lin WY. Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester. International Journal of Mechanical Sciences, 2020, 173: 105457 doi: 10.1016/j.ijmecsci.2020.105457 [17] Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034 [18] Jia J, Shan X, Upadrashta D, et al. An asymmetric bending-torsional piezoelectric energy harvester at low wind speed. Energy, 2020, 198: 117287 doi: 10.1016/j.energy.2020.117287 [19] Zhang J, Fang Z, Shu C, et al. A rotational piezoelectric energy harvester for efficient wind energy harvesting. Sensors and Actuators A:Physical, 2017, 262: 123-129 doi: 10.1016/j.sna.2017.05.027 [20] Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328-334 doi: 10.1016/j.nanoen.2012.01.004 [21] Jiang Q, Chen B, Yang Y. Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. Acs Applied Energy Materials, 2018, 1(8): 4269-4276 doi: 10.1021/acsaem.8b00902 [22] Su Y, Xie G, Xie F, et al. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor. Chemical Physics Letters, 2016, 653: 96-100 doi: 10.1016/j.cplett.2016.04.080 [23] Ren X, Fan H, Wang C, et al. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind. Smart Materials and Structures, 2018, 27(6): 065016 doi: 10.1088/1361-665X/aabe04 [24] Ren X, Fan H, Wang C, et al. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy, 2018, 50: 562-570 doi: 10.1016/j.nanoen.2018.06.002 [25] Park SJ, Lee SH, Seol ML, et al. Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy, 2019, 55: 115-122 doi: 10.1016/j.nanoen.2018.10.063 [26] Jiang Q, Chen B, Zhang K, et al. Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. Acs Applied Materials & Interfaces, 2017, 9(50): 43716-43723 [27] Wang J, Tang L, Zhao L, et al. Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. International Journal of Energy Research, 2020, 44(6): 4516-4528 doi: 10.1002/er.5228 [28] Wang J, Gu S, Zhang C, et al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 2020, 213: 112835 doi: 10.1016/j.enconman.2020.112835 [29] 练继建, 燕翔, 刘昉等. 流致振动发电的效率. 哈尔滨工程大学学报, 2017, 38(10): 1545-1553 (Lian Jijian, Yan Xiang, Liu Fang, et al. Power generating efficiency of flow-induced vibration. Journal of Harbin Engineering Universit, 2017, 38(10): 1545-1553 (in Chinese) [30] Hu J, Pu X, Yang H, et al. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018-3023 doi: 10.1007/s12274-019-2545-y [31] Rui P, Zhang W, Zhong Y, et al. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy, 2020, 74: 104937 doi: 10.1016/j.nanoen.2020.104937 [32] Lee JH, Kim S, Kim TY, et al. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58: 579-584 doi: 10.1016/j.nanoen.2019.01.078 [33] Liu W, Xu L, Liu G, et al. Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy. Iscience, 2020, 23(12): 101848 doi: 10.1016/j.isci.2020.101848 [34] Nam GH, Ahn JH, Lee GH, et al. A new pathway for liquid–solid triboelectric nanogenerator using streaming flow by a novel direct charge transfer. Advanced Energy and Sustainability Research, 2020, 1(1): 2000031 doi: 10.1002/aesr.202000031 [35] Duan Y, Duan J, Zhao Y, et al. Self-powered low-platinum nanorod alloy monoelectrodes for rain energy harvest. Energy Technology, 2018, 6(9): 1606-1609 doi: 10.1002/ente.201700865 [36] Wang S, Wang Y, Liu D, et al. A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing. Sensors and Actuators A: Physical, 2021, 317: 112459 doi: 10.1016/j.sna.2020.112459 [37] Jiang T, Pang H, An J, et al. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Advanced Energy Materials, 2020, 10(23): 2000064 doi: 10.1002/aenm.202000064 [38] Helseth LE. A water droplet-powered sensor based on charge transfer to a flow-through front surface electrode. Nano Energy, 2020, 73: 104809 doi: 10.1016/j.nanoen.2020.104809 [39] Jiang D, Liu G, Li W, et al. A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting. IEEE Transactions on Power Electronics, 2020, 35(1): 25-32 doi: 10.1109/TPEL.2019.2921152 [40] Zhou L, Liu D, Wang J, et al. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 2020, 8(3): 481-506 doi: 10.1007/s40544-020-0390-3 [41] Xu C, Zi Y, Wang AC, et al. On the electron-transfer mechanism in the contact-electrification effect. Advanced Materials, 2018, 30(15): 1706790 doi: 10.1002/adma.201706790 [42] Xu C, Zhang B, Wang AC, et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano, 2019, 13(2): 2034-2041 [43] Wang ZL. On maxwell's displacement current for energy and sensors: The origin of nanogenerators. Materials Today, 2017, 20(2): 74-82 doi: 10.1016/j.mattod.2016.12.001 [44] Wang ZL. Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discussions, 2015, 176: 447-458 [45] Wang Y, Gao S, Xu W, et al. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Advanced Functional Materials, 2020, 30(26): 1908252 doi: 10.1002/adfm.201908252 [46] Lei R, Zhai H, Nie J, et al. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Advanced Materials Technologies, 2019, 4(3): 1800514 doi: 10.1002/admt.201800514 [47] Yang L, Wang Y, Guo Y, et al. Robust working mechanism of water droplet-driven triboelectric nanogenerator: Triboelectric output versus dynamic motion of water droplet. Advanced Materials Interfaces, 2019, 6(24): 1901547 doi: 10.1002/admi.201901547 [48] Xia K, Du C, Zhu Z, et al. Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Applied Materials Today, 2018, 13: 190-197 doi: 10.1016/j.apmt.2018.09.005 [49] Bi M, Wu Z, Wang S, et al. Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting. Nano Energy, 2020, 75: 104968 doi: 10.1016/j.nanoen.2020.104968 [50] Lin Z, Zhang B, Guo H, et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908 doi: 10.1016/j.nanoen.2019.103908 [51] Cheng P, Guo H, Wen Z, et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57: 432-439 doi: 10.1016/j.nanoen.2018.12.054 [52] Nie J, Wang Z, Ren Z, et al. Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10: 2264 doi: 10.1038/s41467-019-10232-x [53] Rahman MT, Salauddin M, Park JY, et al. A natural wind-driven 3d-printed miniaturized and fully enclosed hybrid nanogenerator using flexible blade structure for subway tunnel applications//20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, 2019: 1443-1446 [54] Lin H, He M, Jing Q, et al. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy, 2019, 56: 269-276 doi: 10.1016/j.nanoen.2018.11.037 [55] Zhang Y, Zeng Q, Wu Y, et al. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Letters, 2020, 12(1): 175 doi: 10.1007/s40820-020-00513-2 [56] Gao Q, Li Y, Xie Z, et al. Robust triboelectric nanogenerator with ratchet-like wheel-based design for harvesting of environmental energy. Advanced Materials Technologies, 2020, 5(1): 1900801 doi: 10.1002/admt.201900801 [57] Wang Y, Yu X, Yin M, et al. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy, 2021, 82: 105740 doi: 10.1016/j.nanoen.2020.105740 [58] Liu Y, Liu J, Che L. A high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (tengs). Sensors (Basel, Switzerland) , 2021, 21(9): 2951 doi: 10.3390/s21092951 [59] Lee JS, Yong H, Choi YI, et al. Stackable disk-shaped triboelectric nanogenerator to generate energy from omnidirectional wind. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, in press, https://doi.org/10.1007/s40684-021-00340-9 [60] Zaw NYW, Roh H, Kim I, et al. Omnidirectional triboelectric nanogenerator operated by weak wind towards a self-powered anemoscope. Micromachines, 2020, 11(4): 414 doi: 10.3390/mi11040414 [61] Ren Z, Wang Z, Liu Z, et al. Energy harvesting from breeze wind (0.7-6 m s(−1)) using ultra-stretchable triboelectric nanogenerator. Advanced Energy Materials, 2020, 10 (36): 2001770 [62] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902 doi: 10.1016/j.apenergy.2020.114902 [63] 段松长, 赵西增, 叶洲腾等. 错列角度对双圆柱涡激振动影响的数值模拟研究. 力学学报, 2018, 50(2): 244-253 (Duan Songchang, Zhao Xizeng, Ye Zhouteng, et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244-253 (in Chinese) [64] Zeng Q, Wu Y, Tang Q, et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy, 2020, 70: 104524 doi: 10.1016/j.nanoen.2020.104524 [65] Ren Z, Wang Z, Wang F, et al. Vibration behavior and excitation mechanism of ultra-stretchable triboelectric nanogenerator for wind energy harvesting. Extreme Mechanics Letters, 2021, 45: 101285 doi: 10.1016/j.eml.2021.101285 [66] Bashir M, Rajendran P, Khan SA. Energy harvesting from aerodynamic instabilities: Current prospect and future trends. IOP Conference Series: Materials Science and Engineering, 2018, 290: 012054 doi: 10.1088/1757-899X/290/1/012054 [67] Wang Q, Zou HX, Zhao LC, et al. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Applied Physics Letters, 2020, 117(4): 043902 doi: 10.1063/5.0014484 [68] Wen Q, He X, Lu Z, et al. A comprehensive review of miniatured wind energy harvesters. Nano Materials Science, 2021, 3(2): 170-185 doi: 10.1016/j.nanoms.2021.04.001 [69] Zhao Z, Pu X, Du C, et al. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. Acs Nano, 2016, 10(2): 1780-1787 doi: 10.1021/acsnano.5b07157 [70] Wang Y, Yang E, Chen T, et al. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 2020, 78: 105279 doi: 10.1016/j.nanoen.2020.105279 [71] 夏杨, 彭争春, 张岚斌等. 一种采集风能的多层薄膜颤振混合纳米发电机. 微纳电子技术, 2020, 57(2): 136-141+168 (Xia Yang, Peng Zhengchun, Zhang Lanbin, et al. A multilayer film flutter hybrid nanogenerator for harvesting the wind energy. Micronanoelectronic Technology, 2020, 57(2): 136-141+168 (in Chinese) [72] Trung KP, Wang S, Wang Y, et al. A self-powered and low pressure loss gas flowmeter based on fluid-elastic flutter driven triboelectric nanogenerator. Sensors, 2020, 20(3): 729 doi: 10.3390/s20030729 [73] Wijewardhana KR, Shen TZ, Jayaweera EN, et al. Hybrid nanogenerator and enhancement of water-solid contact electrification using triboelectric charge supplier. Nano Energy, 2018, 52: 402-407 doi: 10.1016/j.nanoen.2018.08.016 [74] 杨恩, 王岩, 王建业等. 基于薄膜拍打型摩擦纳米发电机的风能收集研究. 中国科学:技术科学, 2021: 1-15 (Yang En, Wang Yan, Wang Jianye, et al. Research on a film-flapping triboelectric nanogenerator for wind energy harvesting. Scientia Sinica Technologica, 2021: 1-15 (in Chinese) [75] Zhang L, Meng B, Xia Y, et al. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy, 2020, 70: 104477 doi: 10.1016/j.nanoen.2020.104477 [76] Kim WG, Kim DW, Tcho IW, et al. Triboelectric nanogenerator: Structure, mechanism, and applications. Acs Nano, 2021, 15(1): 258-287 doi: 10.1021/acsnano.0c09803 [77] Liang X, Liu Z, Feng Y, et al. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. nano Energy, 2021, 83: 105836 doi: 10.1016/j.nanoen.2021.105836 [78] Liu L, Yang X, Zhao L, et al. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano, 2021, 15(6): 9412-9421 doi: 10.1021/acsnano.1c00345 [79] Lin ZH, Cheng G, Lin L, et al. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angewandte Chemie International Edition, 2013, 52(48): 12545-12549 doi: 10.1002/anie.201307249 [80] Tao K, Yi H, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197 doi: 10.1016/j.nanoen.2019.104197 [81] Liang X, Jiang T, Liu G, et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy & Environmental Science, 2020, 13(1): 277-285 [82] Zhang C, Liu L, Zhou L, et al. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. Acs Nano, 2020, 14(6): 7092-7100 doi: 10.1021/acsnano.0c01827 [83] Wu Y, Zeng Q, Tang Q, et al. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67: 104205 doi: 10.1016/j.nanoen.2019.104205 [84] Feng Y, Jiang T, Liang X, et al. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Applied Physics Reviews, 2020, 7(2): 021401 doi: 10.1063/1.5135734 [85] Zhong W, Xu L, Zhan F, et al. Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. Acs Nano, 2020, 14(8): 10510-10517 doi: 10.1021/acsnano.0c04413 [86] Nie S, Guo H, Lu Y, et al. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Advanced Materials Technologies, 2020, 5(9): 2000454 [87] Zhang N, Gu H, Lu K, et al. A universal single electrode droplet-based electricity generator (SE-deg) for water kinetic energy harvesting. Nano Energy, 2021, 82: 105735 doi: 10.1016/j.nanoen.2020.105735 [88] Liu X, Yu A, Qin A, et al. Highly integrated triboelectric nanogenerator for efficiently harvesting raindrop energy. Advanced Materials Technologies, 2019, 4(11): 1900608 doi: 10.1002/admt.201900608 [89] Yang L, Wang Y, Zhao Z, et al. Particle-laden droplet-driven triboelectric nanogenerator for real-time sediment monitoring using a deep learning method. Acs Applied Materials & Interfaces, 2020, 12(34): 38192-38201 [90] Chen CY, Tsai CY, Xu MH, et al. A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polymer Letters, 2019, 13(6): 533-542 doi: 10.3144/expresspolymlett.2019.45 [91] Chandrasekhar A, Vivekananthan V, Kim SJ. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy, 2020, 69: 104439 doi: 10.1016/j.nanoen.2019.104439 [92] Fan X, He J, Mu J, et al. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in internet of things and self-powered wind speed sensor. Nano Energy, 2020, 68: 104319 doi: 10.1016/j.nanoen.2019.104319 [93] Rahman MT, Salauddin M, Maharjan P, et al. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 2019, 57: 256-268 doi: 10.1016/j.nanoen.2018.12.052 [94] Jurado UT, Pu SH, White NM. Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications. Nano Energy, 2020, 72: 104701 doi: 10.1016/j.nanoen.2020.104701 [95] Mariello M, Fachechi L, Guido F, et al. Multifunctional sub-100 & micro;m thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible aln and soft parylene c-pdms-ecoflex(tm). Nano Energy, 2021, 83: 105811 doi: 10.1016/j.nanoen.2021.105811 [96] Zhao C, Zhang Q, Zhang W, et al. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 2019, 57: 440-449 doi: 10.1016/j.nanoen.2018.12.062 [97] Kim WJ, Vivekananthan V, Khandelwal G, et al. Encapsulated triboelectric-electromagnetic hybrid generator for a sustainable blue energy harvesting and self-powered oil spill detection. Acs Applied Electronic Materials, 2020, 2(10): 3100-3108 doi: 10.1021/acsaelm.0c00302 [98] Fang Y, Tang T, Li Y, et al. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor iot applications. iScience, 2021, 24(4): 102300 doi: 10.1016/j.isci.2021.102300 [99] Roh H, Kim I, Kim D. Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions. Nano Energy, 2020, 70: 104515 doi: 10.1016/j.nanoen.2020.104515 [100] Jiang D, Su Y, Wang K, et al. A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy, 2020, 70: 104459 doi: 10.1016/j.nanoen.2020.104459 [101] Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature, 2020, 578(7795): 392 doi: 10.1038/s41586-020-1985-6 [102] Zhang Q, Liang Q, Nandakumar DK, et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12(1): 616 doi: 10.1038/s41467-021-20919-9 [103] Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nature communications, 2019, 10: 1427 doi: 10.1038/s41467-019-09461-x [104] Diaz A, Felix-Navarro R. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics, 2004, 62(4): 277-290 doi: 10.1016/j.elstat.2004.05.005 [105] Lee JW, Ye BU, Baik JM. Research update: Recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator. APL Materials, 2017, 5(7): 073802 doi: 10.1063/1.4979306 [106] Nafari A, Sodano HA. Surface morphology effects in a vibration based triboelectric energy harvester. Smart Materials and Structures, 2018, 27(1): 015029 doi: 10.1088/1361-665X/aa9ccb [107] Lee JW, Hwang W. Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy, 2018, 52: 315-322 doi: 10.1016/j.nanoen.2018.08.008 [108] Zhou Q, Kim JN, Han KW, et al. Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-mesh hybrid electrode. Nano Energy, 2019, 59: 120-128 doi: 10.1016/j.nanoen.2019.02.022 [109] Lai YC, Hsiao YC, Wu HM, et al. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Advanced Science, 2019, 6(5): 1801883 doi: 10.1002/advs.201801883 [110] 耿魁伟, 徐志平, 李徐. 基于MoS2/Graphene复合材料的摩擦纳米发电机. 华南理工大学学报(自然科学版), 2020, 48(10): 113-119+128 (Geng Kuiwei, Xu Zhiping, Li Xu. Triboelectric nanogenerator based on MoS2/graphene composite. Journal of South China University of Technology (Natural Science Edition) , 2020, 48(10): 113-119+128 (in Chinese) [111] Ye Q, Wu Y, Qi Y, et al. Effects of liquid metal particles on performance of triboelectric nanogenerator with electrospun polyacrylonitrile fiber films. Nano Energy, 2019, 61: 381-388 doi: 10.1016/j.nanoen.2019.04.075 [112] Wang L, Yang X, Daoud WA. High power-output mechanical energy harvester based on flexible and transparent au nanoparticle-embedded polymer matrix. Nano Energy, 2019, 55: 433-440 doi: 10.1016/j.nanoen.2018.10.030 [113] Nie J, Ren Z, Xu L, et al. Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Advanced Materials, 2020, 32(2): 1905696 doi: 10.1002/adma.201905696 [114] Cheng X, Tang W, Song Y, et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61: 517-532 doi: 10.1016/j.nanoen.2019.04.096 [115] Sun W, Wang N, Li J, et al. Humidity-resistant triboelectric nanogenerator and its applications in wind energy harvesting and self-powered cathodic protection. Electrochimica Acta, 2021, 391: 138994 doi: 10.1016/j.electacta.2021.138994 [116] Xiong J, Luo H, Gao D, et al. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy, 2019, 61: 584-593 doi: 10.1016/j.nanoen.2019.04.089 [117] Cui X, Zhang H, Cao S, et al. Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure. Nano Energy, 2018, 52: 71-77 doi: 10.1016/j.nanoen.2018.07.037 [118] Han Q, Ding Z, Sun W, et al. Hybrid triboelectric-electromagnetic generator for self-powered wind speed and direction detection. Sustainable Energy Technologies and Assessments, 2020, 39: 100717 doi: 10.1016/j.seta.2020.100717 [119] Xu S, Feng Y, Liu Y, et al. Gas-solid two-phase flow-driven triboelectric nanogenerator for wind-sand energy harvesting and self-powered monitoring sensor. Nano Energy, 2021, 85: 106023 doi: 10.1016/j.nanoen.2021.106023 [120] Hu S, Shi Z, Zheng R, et al. Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. Acs Applied Materials & Interfaces, 2020, 12(36): 40021-40030 [121] Chen P, An J, Shu S, et al. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021, 11(9): 2003066 doi: 10.1002/aenm.202003066 [122] Liu L, Shi Q, Lee C. A novel hybridized blue energy harvester aiming at all-weather iot applications. Nano Energy, 2020, 76: 105052 doi: 10.1016/j.nanoen.2020.105052 -