HYBRID PIEZOELECTRIC-TRIBOELECTRIC ROTATIONAL ENERGY HARVESTER USING DYNAMIC COORDINATED MODULATION MECHANISM
-
摘要: 低转速激励下能量采集性能差是目前制约旋转能量采集技术应用的瓶颈问题. 本文提出了动力学协同调控机制, 并用于调控系统的动力学行为, 可以使器件在低转速激励下有效工作, 提高了旋转能量采集系统的电学性能. 旋转刚度软化、非线性磁力、几何边界的协同调控既可以增加系统在低速下的振动位移以及压电材料的形变, 也可调控系统的最大位移, 使其振动可控并限制位移过大提高可靠性. 此外, 几何边界可以方便地集成摩擦纳米发电机, 实现压电与摩擦两种机电转换机制在振动和碰撞过程中协同发电, 有效利用空间和提高输出电能. 基于哈密顿原理建立了系统的机电耦合动力学模型并进行了实验验证. 实验结果表明系统能够在0~250 r/min的低转速范围内有效工作, 在转速为250 r/min时, 压电单元和摩擦纳米发电机的最大峰峰值电压分别为132 V和1128 V, 总平均功率为1426 μW. 本文提出的动力学协同调控机制为能量采集系统动力学和电学性能改进提供新的途径, 有益于促进自供能物联网技术的发展与应用.Abstract: The poor performance of energy harvesting under low speed excitation is the bottleneck that restricts the application of rotational energy harvesting. In this paper, a dynamic coordinated modulation mechanism is proposed to modulate the dynamic behavior of the system, which can make the device work effectively under low speed excitation and achieve an enhanced electrical performance of the rotational energy harvesting system. The coordinated modulation of centrifugal-softening-nonlinear-magnetic-force-geometric-boundary can not only increase the vibration displacement of the system and the deformation of the piezoelectric material under low speed excitation, but also modulate the maximum displacement of the system when the vibration displacement is too large, so as to make the vibration controllable and improve the reliability. Moreover, the geometric boundary can easily integrate the triboelectric nanogenerator to realize the coordinated power generation of piezoelectric and triboelectric in the process of vibration and impact, which can make effective use of space and enhance the electrical performance. Based on Hamiltonian principle, the electromechanical coupling equation of the system is established and verified by experiments. The experimental results show that the system can work effectively in the speed range of 0−250 r/min. The P-P voltage of piezoelectric unit and triboelectric nanogenerator are 132 V and 1128 V, and the total average power is 1426 μW at the speed of 250 r/min. The dynamic coordinated modulation mechanism proposed in this paper provides a new method to improve the dynamic and electrical performance of energy harvesting system, and shows potential application prospects in the self-powered internet of things.
-
图 5 在不同转速激励下PEH单元和TENG单元的实验和仿真电压波形图. (a) PEH单元和(b)TENG单元在转速为150 r/min和200 r/min时的实验输出电压, (c) PEH单元和(d)TENG单元在转速为150 r/min和200 r/min时的仿真输出电压
Figure 5. Comparison of the output voltage of the PEH and the TENG unit from experiments and simulations at different rotational speeds. The experimental voltage from (a) PEH and (b) TENG at the rotational speed of 150 r/min and 200 r/min, the simulation voltage from (c) PEH and (d) TENG at the rotational speed of 150 r/min and 200 r/min
图 8 在刚度软化和刚度硬化效应下, 磁间距20 mm, 梁厚度0.3 mm时, PEH单元和TENG单元输出电压对比.(a) PEH单元, (b) TENG1 单元, (c) TENG2 单元
Figure 8. Comparison of the output voltage of the PEH and the TENG unit between centrifugal softening and centrifugal stiffening effects with the same condition (d0 = 20 mm, b = 0.3 mm). (a) PEH unit, (b) TENG1 unit, (c) TENG2 unit
表 1 REH-DCMM系统的几何和材料参数
Table 1. Geometric and material properties of the REH-DCMM system
Categories Parameter descriptions Values cantilever beam length ${s_2}$/m 0.12 width $ b$/m 0.03 thickness ${h_{\rm{s}}}$/m 3 × 10−4 density ${\rho _{\rm{s}}}$/(kg·m−3) 7800 elastic modulus ${E_{\rm{s}}}$/GPa 200 piezoelectric material (MFC) length ${s_1}$/m 0.037 thickness ${h_{\rm{p} } }$/m 3 × 10−4 density ${\rho _{\rm{p}}}$/(kg·m−3) 5440 elastic modulus ${E_{\rm{p}}}$/GPa 30.336 coupling coefficient
${d_{31}}$/(C·N−1)−1.70 × 10−10 dielectric constant ${\varepsilon _{33}}$/(F·m−1) 1.265 3 × 10−8 triboelectric nanogenerator length ${s_{\rm{T}}}$/m 0.083 thickness ${h_{\rm{T}}}$/m 3.1 × 10−4 density ${\rho _{\rm{T}}}$/(kg·m−3) 1912 elastic modulus ${E_{\rm{T}}}$/MPa 300 others mass of permanent
magnet $ m$/kg0.042 thickness of permanent
magnet ${t_{\rm{m}}}$/m5 × 10−3 permanent magnet
volume ${V_{\rm{A}}}$, ${V_{\rm{B}}}$/m34 × 10−4 residual magnetic
flux density ${B_{\rm{r}}}$/T1.2 vacuum permeability ${\mu _0}$ 1.256 × 10−6 -
[1] 亓有超, 赵俊青, 张弛. 微纳振动能量收集器研究现状与展望. 机械工程学报, 2020, 56(13): 1-15 (Qi Youchao, Zhao Junqing, Zhang Chi. Review and prospect of micro-nano vibration energy harvesters. Journal of Mechanical Engineering, 2020, 56(13): 1-15 (in Chinese) doi: 10.3901/JME.2020.13.001 [2] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902 [3] Qian F, Zhou S, Zuo L. Improving the off-resonance energy harvesting performance using dynamic magnetic preloading. Acta Mechanica Sinica, 2020, 36(3): 624-634 doi: 10.1007/s10409-020-00929-4 [4] Zhou S, Zuo L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 2018, 61: 271-284 doi: 10.1016/j.cnsns.2018.02.017 [5] Yu N, Ma H, Wu C, et al. Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester. Mechanical Systems and Signal Processing, 2021, 156: 107608 doi: 10.1016/j.ymssp.2021.107608 [6] Fang F, Xia G, Wang J. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mechanica Sinica, 2018, 34(3): 561-577 doi: 10.1007/s10409-017-0743-y [7] Jiang W, Han X, Chen L, et al. Improving energy harvesting by internal resonance in a spring-pendulum system. Acta Mechanica Sinica, 2020, 36: 618-623 doi: 10.1007/s10409-020-00945-4 [8] Hu G, Liang J, Lan C, et al. A twist piezoelectric beam for multi-directional energy harvesting. Smart Materials and Structures, 2020, 29(11): 11LT01 doi: 10.1088/1361-665X/abb648 [9] 王东伟, 刘明星, 吴霄等. 压电式摩擦振动能量收集的试验研究与仿真分析. 机械工程学报, 2021, 57(9): 89-98 (Wang Dongwei, Liu Mingxing, Wu Xiao, et al. Experimental and numerical study on the response characteristics of piezoelectric energy harvester via friction-induced vibration. Journal of Mechanical Engineering, 2021, 57(9): 89-98 (in Chinese) doi: 10.3901/JME.2021.09.089 [10] 李海涛, 丁虎, 陈立群. 带有非对称势能阱特性的双稳态能量采集系统混沌动力学分析. 振动与冲击, 2020, 39(18): 54-59 (Li Haitao, Ding Hu, Chen Liqun. Chaotic dynamics of a bi-stable energy harvesting system with asymmetric potential well characteristics. Journal of Vibration and Shock, 2020, 39(18): 54-59 (in Chinese) [11] Wang J, Geng L, Zhou S, et al. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica, 2020, 36(3): 592-605 doi: 10.1007/s10409-020-00928-5 [12] Fu H, Mei X, Yurchenko D, et al. Rotational energy harvesting for self-powered sensing. Joule, 2021, 5(5): 1074-1118 doi: 10.1016/j.joule.2021.03.006 [13] Zhao L, Zou H, Gao Q, et al. Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration. Science China Technological Sciences, 2020, 63(1674-7321): 2051 [14] Cai M, Liao WH. High power density inertial energy harvester without additional proof mass for wearables. IEEE Internet of Things Journal, 2020, 8(1): 297-308 [15] Wang Y, Chen C, Sung C. System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 754-763 doi: 10.1109/TMECH.2012.2183640 [16] Zhang Y, Cao J, Zhu H, et al. Design, modeling and experimental verification of circular Halbach electromagnetic energy harvesting from bearing motion. Energy Conversion and Management, 2019, 180: 811-821 doi: 10.1016/j.enconman.2018.11.037 [17] Zhao LC, Zou HX, Yan G, et al. Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Conversion and Management, 2019, 201: 112166 doi: 10.1016/j.enconman.2019.112166 [18] Wang P, Pan L, Wang J, et al. An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano, 2018, 12(9): 9433-9440 doi: 10.1021/acsnano.8b04654 [19] Tao K, Chen Z, Yi H, et al. Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Letters, 2021, 13(1): 123 doi: 10.1007/s40820-021-00644-0 [20] Xie Z, Zeng Z, Wang Y, et al. Novel sweep-type triboelectric nanogenerator utilizing single freewheel for random triggering motion energy harvesting and driver habits monitoring. Nano Energy, 2020, 68: 104360 doi: 10.1016/j.nanoen.2019.104360 [21] Xie Y, Wang S, Lin L, et al. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano, 2013, 7(8): 7119-7125 doi: 10.1021/nn402477h [22] Fu H, Yeatman EM. Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation. Mechanical Systems and Signal Processing, 2019, 125: 229-244 doi: 10.1016/j.ymssp.2018.04.043 [23] Khameneifar F, Moallem M, Arzanpour S. Modeling and analysis of a piezoelectric energy scavenger for rotary motion applications. Journal of Vibration and Acoustics, 2011, 133(1): 011005 [24] Fan K, Liang G, Wei D, et al. Achieving high-speed rotations with a semi-flexible rotor driven by ultralow-frequency vibrations. Applied Physics Letters, 2020, 117(22): 223901 doi: 10.1063/5.0027634 [25] Zhai N, Wen Z, Chen X, et al. Blue Energy collection toward All-hours self-powered chemical energy conversion. Advanced Energy Materials, 2020, 10(33): 2001041 doi: 10.1002/aenm.202001041 [26] Kim JW, Salauddin M, Cho H, et al. Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets. Applied Energy, 2019, 250: 776-785 doi: 10.1016/j.apenergy.2019.05.059 [27] Mei X, Zhou R, Fang S, et al. Theoretical modeling and experimental validation of the centrifugal softening effect for high-efficiency energy harvesting in ultralow-frequency rotational motion. Mechanical Systems and Signal Processing, 2021, 152: 107424 doi: 10.1016/j.ymssp.2020.107424 [28] Zou HX, Zhang WM, Li WB, et al. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Conversion and Management, 2017, 148: 1391-1398 doi: 10.1016/j.enconman.2017.07.005 [29] Fang S, Wang S, Miao G, et al. Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect. Nonlinear Dynamics, 2020, 101(1): 123-152 doi: 10.1007/s11071-020-05732-1 [30] Zhao LC, Zou HX, Gao QH, et al. Magnetically modulated orbit for human motion energy harvesting. Applied Physics Letters, 2019, 115(26): 263902 doi: 10.1063/1.5131193 -