EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环和不均匀冻胀下寒区隧道的塑性解答

张常光 高本贤 周渭 李海祥

张常光, 高本贤, 周渭, 李海祥. 冻融循环和不均匀冻胀下寒区隧道的塑性解答. 力学学报, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-401
引用本文: 张常光, 高本贤, 周渭, 李海祥. 冻融循环和不均匀冻胀下寒区隧道的塑性解答. 力学学报, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-401
Zhang Changguang, Gao Benxian, Zhou Wei, Li Haixiang. Plastic solutions of a cold region tunnel under freeze-thaw cycles and non-uniform frost heave. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-401
Citation: Zhang Changguang, Gao Benxian, Zhou Wei, Li Haixiang. Plastic solutions of a cold region tunnel under freeze-thaw cycles and non-uniform frost heave. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-401

冻融循环和不均匀冻胀下寒区隧道的塑性解答

doi: 10.6052/0459-1879-21-401
基金项目: 国家自然科学基金(41202191), 地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2020 K022), 长安大学中央高校基本科研业务费专项资金(300102280108)
详细信息
    作者简介:

    张常光, 教授, 主要研究方向: 非饱和土与地下工程. E-mail: zcg1016@163.com

  • 中图分类号: TU457

PLASTIC SOLUTIONS OF A COLD REGION TUNNEL UNDER FREEZE-THAW CYCLES AND NON-UNIFORM FROST HEAVE

  • 摘要: 季冻区长期冻融循环造成围岩强度和变形性能劣化, 使得寒区隧道易进入塑性状态, 且寒区隧道围岩呈现以径向冻胀为主的不均匀冻胀. 合理考虑寒区隧道冻融循环对围岩性能的劣化以及围岩的不均匀冻胀属性, 基于Mohr-Coulomb准则推导了寒区隧道冻胀力、应力与位移的塑性解答, 同时给出相应的弹性解答和冻结围岩弹-塑性状态的判定方法, 对所得解答进行讨论和对比验证, 最后探讨了冻融循环、不均匀冻胀与体积冻胀率对寒区隧道应力分布、塑性区半径、洞壁位移和冻胀力的影响规律. 研究表明: 本文解答具有广泛的适用性和良好的可比性, 并得到文献塑性解答的退化验证; 冻胀力、洞壁位移与塑性区半径随冻融次数增加分别增大20.3%、8.44倍、2.16倍, 以量化长期冻融循环造成围岩性能的劣化效应; 冻结围岩由均匀冻胀转变为不均匀冻胀时冻胀力增大42.8%, 但塑性区半径几乎无变化; 4种体积冻胀率参数均显著影响冻胀力, 尤其是水热迁移系数可使冻胀力增大123.6%. 本文结果可为季冻区隧道设计与冻害问题解决提供一定的理论依据.

     

  • 图  1  寒区隧道塑性力学模型

    Figure  1.  Plastic mechanical model of a cold region tunnel

    图  2  寒区隧道弹性力学模型

    Figure  2.  Elastic mechanical model of a cold region tunnel

    图  3  本文塑性解(N=0)与文献[7]解答的对比

    Figure  3.  Comparisons between plastic results from this study with N=0 and the reference [7]

    图  4  冻融循环的影响(续)

    Figure  4.  Influences of freeze-thaw cycles (continued)

    4  冻融循环的影响

    4.  Influences of freeze-thaw cycles

    图  5  不均匀冻胀的影响

    Figure  5.  Influences of the non-uniform frost heave

    图  6  体积冻胀率的影响

    Figure  6.  Influences of the volumetric frost heave ratio

    表  1  寒区隧道的塑性状态参数[7]

    Table  1.   Plastic state parameters of a cold region tunnel[7]

    ro/mr1/mr2/mEs/GPaEf/GPaEu/GPaμsμfμuc0/MPaφ0βηvpo/MPa
    4.55.07.028.07.84.60.160.350.331.7453.00.01652.5
    下载: 导出CSV

    表  2  寒区隧道参数[13, 18]

    Table  2.   Parameters of a cold region tunnel[13, 18]

    ro/mr1/mr2/mEs/GPaEf/GPaEu/GPaμsμfμuca/MPacb/MPaαpo/MPa
    3.0 3.5 5.0 10.0 37.64 37.64 0.30 0.25 0.25 -0.98 5.48 -0.015 3.8
    l0/μm lc/μm ω KI/MPa n0 β m ζ s φa φb ξ ρo/μm-2
    0.9 0.55 0.019 600 0.0067 3.0 1.42 1.3 -20.0 37.48 16.83 -0.029 17
    下载: 导出CSV
  • [1] 夏才初, 吕志涛, 王岳嵩. 寒区隧道冻胀力计算方法研究进展与思考. 中国公路学报, 2020, 33(5): 35-43 (Xia Caichu, Lv Zhitao, Wang Yuesong. Advance and review on frost heaving force calculation methods in cold region tunnels. China Journal of Highway and Transport, 2020, 33(5): 35-43 (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.05.003
    [2] 薛翊国, 孔凡猛, 杨为民等. 川藏铁路沿线主要不良地质条件与工程地质问题. 岩石力学与工程学报, 2020, 39(3): 445-468 (Xue Yiguo, Kong Fanmeng, Yang Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468 (in Chinese)
    [3] Lai YM, Wu H, Wu ZW. Analytical viscoelastic solution for frost force in cold-region tunnels. Cold Regions Science and Technology, 2000, 31(3): 227-234 doi: 10.1016/S0165-232X(00)00017-3
    [4] Feng Q, Jiang BS, Zhang Q, et al. Analytical elasto-plastic solution for stress and deformation of surrounding rock in cold region tunnels. Cold Regions Science and Technology, 2014, 108: 59-68 doi: 10.1016/j.coldregions.2014.08.001
    [5] 黄继辉, 夏才初, 韩常领等. 考虑围岩不均匀冻胀的寒区隧道冻胀力解析解. 岩石力学与工程学报, 2015, 34(Supp.2): 3766-3774 (Huang Jihui, Xia Caichu, Han Changling, et al. Analytical solution of frost heave force acting on cold-region tunnel liner considering anisotropy frost heave of surrounding rock. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Supp.2): 3766-3774 (in Chinese)
    [6] Xia CC, Lv ZT, Li Q, et al. Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels. Cold Regions Science and Technology, 2018, 152: 48-58 doi: 10.1016/j.coldregions.2018.04.011
    [7] Lv ZT, Xia CC, Wang Y S, et al. Analytical elasto-plastic solution of frost heaving force in cold region tunnels considering transversely isotropic frost heave of surrounding rock. Cold Regions Science and Technology, 2019, 163: 87-97 doi: 10.1016/j.coldregions.2019.04.008
    [8] 张淑娟, 赖远明, 苏新民等. 风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究. 岩石力学与工程学报, 2004, 23(24): 4105-4111 (Zhang Shujuan, Lai Yuanming, Su Xinmin, et al. A laboratory study on the damage propagation of rocks under freeze-thaw cycle condition. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4105-4111 (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.24.002
    [9] 贾海梁, 项伟, 申艳军等. 冻融循环作用下岩石疲劳损伤计算中关键问题的讨论. 岩石力学与工程学报, 2017, 36(2): 79-90 (Jia Hailiang, Xiang Wei, Shen Yanjun, et al. Discussion of the key issues within calculation of the fatigue damage of rocks subjected to freeze-thaw cycles. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 79-90 (in Chinese)
    [10] Tan XJ, Chen WZ, Yang JP, et al. Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles. Cold Regions Science and Technology, 2011, 68(3): 130-138 doi: 10.1016/j.coldregions.2011.05.007
    [11] 田延哲, 徐拴海. 冻融循环条件下岩石物理力学指标相关性分析. 矿业安全与环保, 2017, 44(4): 24-27 (Tian Yanzhe, Xu Shuanhai. Inter-relative analysis on physical and mechanical indicators of rock under freezing and thawing cycle condition. Mining Safety & Environmental Protection, 2017, 44(4): 24-27 (in Chinese) doi: 10.3969/j.issn.1008-4495.2017.04.006
    [12] 贺晶晶, 师俊平. 冻融后不同含水状态砂岩的剪切破坏特性. 岩石力学与工程学报, 2018, 37(6): 1350-1358 (He Jingjing, Shi Junping. Shear failure properties of sandstone with different moisture contents after cyclic freezing-thawing. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1350-1358 (in Chinese)
    [13] Mousavi SZS, Tavakoli H, Moarefvand P, et al. Assessing the effect of freezing-thawing cycles on the results of the triaxial compressive strength test for calc-schist rock. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104090 doi: 10.1016/j.ijrmms.2019.104090
    [14] 沈小轲, 朱杰兵, 王小伟等. 冻融循环条件下云母石英片岩三轴力学特性与强度预测模型. 长江科学院院报, 2021, 38(3): 83-89 + 96 (Shen Xiaoke, Zhu Jiebing, Wang Xiaowei, et al. Ttriaxial mechanical properties and strength prediction model of mica quartz schist under freezing-thawing cycles. Journal of Yangtze River Scientific Research Institute, 2021, 38(3): 83-89 + 96 (in Chinese) doi: 10.11988/ckyyb.201914282021
    [15] 刘泉声, 黄诗冰, 康永水等. 岩体冻融疲劳损伤模型与评价指标研究. 岩石力学和工程学报, 2015, 34(6): 1116-1127 (Liu Quansheng, Huang Shibing, Kang Yongshui, et al. Fatigue damage model and evaluation index for rock mass under freezing-thawing cycles. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1116-1127 (in Chinese)
    [16] 张慧梅, 王焕, 张嘉凡等. CT尺度下冻融岩石细观损伤特性分析. 辽宁工程技术大学学报(自然科学版), 2020, 39(1): 51-56 (Zhang Huimei, Wang Huan, Zhang Jiafan, et al. Analysis of meso-damage characteristics of freeze-thaw rock on CT scale. Journal of Liaoning Technical University (Natural Science), 2020, 39(1): 51-56 (in Chinese)
    [17] Liu HY, Yuan XP, Xie TC. A damage model for frost heaving pressure in circular rock tunnel under freezing-thawing cycles. Tunnelling and Underground Space Technology, 2019, 83: 401-408 doi: 10.1016/j.tust.2018.10.012
    [18] 刘红岩, 赵雨霞. 冻融循环下隧道围岩冻胀力理论计算. 中南大学学报(自然科学版), 2020, 51(4): 1049-1058 (Liu Hongyan, Zhao Yuxia. Theoretical calculation of frost heaving pressure in tunnel surrounding rock during freeze-thaw cycles. Journal of Central South University (Science and Technology) , 2020, 51(4): 1049-1058 (in Chinese) doi: 10.11817/j.issn.1672-7207.2020.04.019
    [19] 刘长武, 曹磊, 刘树新. 深埋非圆形地下洞室围岩应力解析分析的“当量半径”法. 铜业工程, 2010(1): 1-5 (Liu Changwu, Cao Lei, Liu Shuxin. Method of “equivalent radius” for the analyzing rock stress of high-buried non-circular underground chambers. Copper Engineering, 2010(1): 1-5 (in Chinese) doi: 10.3969/j.issn.1009-3842.2010.01.001
    [20] 马巍, 王大雁. 中国冻土力学研究50 a回顾与展望. 岩土工程学报, 2012, 34(4): 625-640 (Ma Wei, Wang Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640 (in Chinese)
    [21] 夏才初, 黄继辉, 韩常领等. 寒区隧道岩体冻胀率的取值方法和冻胀敏感性分级. 岩石力学与工程学报, 2013, 32(9): 1876-1885 (Xia Caichu, Huang Jihui, Han Changling, et al. Methods of frost-heave ratio evaluation and classification of frost-heave susceptibility of tunnel surrounding rocks in cold regions. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1876-1885 (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.09.020
    [22] 夏才初, 吕志涛, 黄继辉等. 寒区隧道围岩最大冻结深度计算的半解析方法. 岩土力学, 2018, 39(6): 2145-2154 (Xia Caichu, Lv Zhitao, Huang Jihui, et al. Semi-analytical method of maximum frozen depth calculation in cold region tunnel. Rock and Soil Mechanics, 2018, 39(6): 2145-2154 (in Chinese)
    [23] 张常光, 高本贤, 单冶鹏等. 横观各向同性冻胀寒区隧道应力与位移的塑性统一解. 岩土工程学报, 2020, 42(10): 1825-1831 (Zhang Changguang, Gao Benxian, Shan Yepeng, et al. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825-1831 (in Chinese)
    [24] Zhang CG, Cai MM, Zhao JH, et al. Application of a unified linear yield criterion in plane strain to study the strength theory effect in geotechnical engineering. Environmental Earth Sciences, 2018, 77: 758 doi: 10.1007/s12665-018-7950-0
    [25] 郑颖人, 朱合华, 方正昌等. 地下工程围岩稳定分析与设计理论. 北京: 人民交通出版社, 2012

    Zheng Yingren, Zhu Hehua, Fang Zhengchang, et al. The stability analysis and design theory of surrounding rock of underground engineering. Beijing: China Communications Press, 2012 (in Chinese
    [26] 伍毅敏, 李文博, 傅鹤林等. 季冻区隧道过渡段二衬短周期冻融数值模拟. 岩土工程学报, 2017, 39(10): 1930-1935 (Wu Yimin, Li Wenbo, Fu Helin, et al. Numerical simulation of freeze-thaw in short period of secondary lining at tunnel transition section in seasonal frozen area. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1930-1935 (in Chinese) doi: 10.11779/CJGE201710023
    [27] Liu WW, Feng Q, Fu SG, et al. Elasto-plastic solution for cold-regional tunnels considering the compound effect of non-uniform frost heave, supporting strength and supporting time. Tunnelling and Underground Space Technology, 2018, 82: 293-302 doi: 10.1016/j.tust.2018.08.054
    [28] 夏才初, 王岳嵩, 郑金龙等. 裂隙岩体不均匀冻胀性研究. 岩土力学, 2020, 41(4): 1161-1168 (Xia Caichu, Wang Yuesong, Zheng Jinlong, et al. Study of differential frost heave of fractured rock mass. Rock and Soil Mechanics, 2020, 41(4): 1161-1168 (in Chinese)
    [29] Feng Q, Yang ZD, Liu WW, et al. Experimental study of the anisotropic frost heave characteristics of rock surrounding tunnels in cold regions. Journal of Cold Regions Engineering, 2021, 35(4): 04021014 doi: 10.1061/(ASCE)CR.1943-5495.0000261
    [30] Zhao X, Yang XH, Zhang HW, et al. An analytical solution for frost heave force by the multifactor of coupled heat and moisture transfer in cold-region tunnels. Cold Regions Science and Technology, 2020, 175: 103077 doi: 10.1016/j.coldregions.2020.103077
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  8
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 录用日期:  2021-11-12
  • 网络出版日期:  2021-11-17

目录

    /

    返回文章
    返回