EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线形−拱形组合梁式三稳态压电俘能器动力学特性研究

张旭辉 陈路阳 陈孝玉 徐冬梅 朱福林 郭岩

张旭辉, 陈路阳, 陈孝玉, 徐冬梅, 朱福林, 郭岩. 线形−拱形组合梁式三稳态压电俘能器动力学特性研究. 力学学报, 2021, 53(11): 2996-3006 doi: 10.6052/0459-1879-21-392
引用本文: 张旭辉, 陈路阳, 陈孝玉, 徐冬梅, 朱福林, 郭岩. 线形−拱形组合梁式三稳态压电俘能器动力学特性研究. 力学学报, 2021, 53(11): 2996-3006 doi: 10.6052/0459-1879-21-392
Zhang Xuhui, Chen Luyang, Chen Xiaoyu, Xu Dongmei, Zhu Fulin, Guo Yan. Research on dynamics characteristics of linear-arch composed beam tri-stable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2996-3006 doi: 10.6052/0459-1879-21-392
Citation: Zhang Xuhui, Chen Luyang, Chen Xiaoyu, Xu Dongmei, Zhu Fulin, Guo Yan. Research on dynamics characteristics of linear-arch composed beam tri-stable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2996-3006 doi: 10.6052/0459-1879-21-392

线形−拱形组合梁式三稳态压电俘能器动力学特性研究

doi: 10.6052/0459-1879-21-392
基金项目: 国家自然科学基金资助项目(51974228)
详细信息
    作者简介:

    张旭辉, 教授, 主要研究方向: 振动能量俘获. E-mail: zhangxh@xust.edu.cn

  • 中图分类号: TN384TN712 + .5

RESEARCH ON DYNAMICS CHARACTERISTICS OF LINEAR-ARCH COMPOSED BEAM TRI-STABLE PIEZOELECTRIC ENERGY HARVESTER

  • 摘要: 利用振动能量俘获技术将设备工况振动能转化为电能, 为实现煤矿井下无线监测节点自供电提供了新的思路. 通过引入非线性磁力设计了一种线形−拱形组合梁式三稳态压电俘能器, 分析了磁铁水平间距、垂直间距和激励加速度对动力学特性的影响规律. 利用磁偶极子法建立磁力模型, 通过实验测量线形−拱形组合梁的恢复力, 并采用多项式拟合得到恢复力模型, 基于欧拉−伯努利梁理论和拉格朗日方程建立系统的动力学模型, 从时域角度仿真分析了磁铁水平间距、垂直间距和激励加速度对系统动力学特性的影响规律. 研制线形−拱形组合梁式三稳态压电俘能器样机并搭建实验平台进行实验研究, 通过采集组合梁末端响应速度数据, 验证了理论分析的正确性. 研究表明: 引入非线性磁场能够使系统势能呈现单势阱、双势阱或三势阱, 激励一定时, 调整磁铁水平间距和垂直间距能够使系统实现单稳态、双稳态或三稳态运动, 且在三稳态运动时响应位移较大, 增大激励水平有利于系统越过势垒实现大幅响应. 研究为线形−拱形组合梁式三稳态压电俘能器的设计提供了理论指导.

     

  • 图  1  线形−拱形组合梁式三稳态压电俘能器结构示意图

    Figure  1.  Schematic diagram of linear-arch beam TPEH

    图  2  非线性磁力模型

    Figure  2.  Nonlinear magnetic force model

    图  3  线形−拱形组合梁位移−恢复力曲线图

    Figure  3.  Nonlinear restoring force of linear-arch beam

    图  4  ${d_g}$对系统势能和磁力的影响

    Figure  4.  The influence of ${d_g}$on potential energy and magnetic force

    图  5  $d$对系统势能和磁力的影响

    Figure  5.  The influence of $d$ on potential energy and magnetic force

    6  不同水平间距$d$下的系统相图和时间-位移图

    6.  Phase portrait and time-displacement diagram of different magnetic distance$d$

    图  6  不同水平间距$d$下的系统相图和时间-位移图(续)

    Figure  6.  Phase portrait and time-displacement diagram of different magnetic distance$d$ (continued)

    7  不同垂直间距${d_g}$下的系统相图和时间−位移图

    7.  Phase portrait and time-displacement diagram of different magnetic distance${d_g}$

    图  7  不同垂直间距${d_g}$下的系统相图和时间−位移图(续)

    Figure  7.  Phase portrait and time-displacement diagram of different magnetic distance${d_g}$ (continued)

    图  8  不同激励加速度下的系统相图

    Figure  8.  Phase portrait of different excitation acceleration

    图  9  实验平台

    Figure  9.  Experimental platform

    图  10  不同激励加速度下的实验相图

    Figure  10.  Experimental phase diagrams under different excitation accelerations

    表  1  三稳态压电俘能器结构和材料参数

    Table  1.   Structure and material parameters of TPEH

    ParameterValue
    linear-arch beam $ {L_1} $/mm 20
    $ {h_S} $/mm 0.2
    $ b $/mm 8
    $ r $/mm 10
    density/ (kg·m−3) $ 8300 $
    Young's modulus / (N·m−2) $1.28 \times {10^{11}}$
    PVDF permittivity constant/ (F·m−1) $ 1.10 \times {10^{ - 10}} $
    Young's modulus / (N·m−2) $ 3 \times {10^9} $
    density / (kg·m−3) $ 1780 $
    $ {h_P} $/mm 0.11
    magnet structure size/mm $ 10 \times 10 \times 5 $
    ${\mu _0}$/ (H·m−1) $4{\text{π}} \times {10^{ - 7} }$
    下载: 导出CSV
  • [1] Li K, Xie Z, Zeng D, et al. Power cable vibration monitoring based on wireless distributed sensor network. Procedia Computer Science, 2021, 183: 401-411 doi: 10.1016/j.procs.2021.02.077
    [2] Joris L, Dupont F, Laurent P, et al. An autonomous sigfox wireless sensor node for environmental monitoring. IEEE Sensors Letters, 2019, 3(7): 1-4
    [3] Fang L, Peng L. Design and research on wireless intelligent monitoring system for sewage pipeline leakage of textile mill. Microprocessors and Microsystems, 2021, 81: 103734 doi: 10.1016/j.micpro.2020.103734
    [4] 亓有超, 赵俊青, 张弛. 微纳振动能量收集器研究现状与展望. 机械工程学报, 2020, 56(13): 1-15 (Qi Youchao, Zhao Junqing, Zhang Chi. Review and prospect of micro-nano vibration energy harvesters. Journal of Mechanical Engineering, 2020, 56(13): 1-15 (in Chinese) doi: 10.3901/JME.2020.13.001
    [5] Tang X, Wang X, Cattley R, et al. Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review. Sensors, 2018, 18(12): 4113 doi: 10.3390/s18124113
    [6] Ahmad I, Hee LM, Abdelrhman AM, et al. Scopes, challenges and approaches of energy harvesting for wireless sensor nodes in machine condition monitoring systems: A review. Measurement, 2021, 183: 109856
    [7] Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-697 doi: 10.1016/j.joule.2018.03.011
    [8] 高扬, 穆继亮, 何剑等. 煤机设备无线自供电状态监测系统. 机械工程学报, 2020, 56(13): 41-49 (Gao Yang, Mu Jiliang, He Jian, et al. Wireless self-powered condition monitoring system for coal machine equipment. Journal of Mechanical Engineering, 2020, 56(13): 41-49 (in Chinese) doi: 10.3901/JME.2020.13.041
    [9] Yu L, Tang L, Yang T. Piezoelectric passive self-tuning energy harvester based on a beam-slider structure. Journal of Sound and Vibration, 2020, 489: 115689 doi: 10.1016/j.jsv.2020.115689
    [10] 曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019, 51(4): 1148-1155 (Cao Dongxing, Ma Hongbo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese) doi: 10.6052/0459-1879-18-426
    [11] 何燕丽, 赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报, 2019, 51(4): 1170-1179 (He Yanli, Zhao Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of Green’s functions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170-1179 (in Chinese) doi: 10.6052/0459-1879-19-007
    [12] Abdelkefi A, Nayfeh AH, Hajj MR. Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dynamics, 2012, 67(2): 1147-1160 doi: 10.1007/s11071-011-0059-6
    [13] Yildirim T, Ghayesh MH, Li W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable and Sustainable Energy Reviews, 2017, 71: 435-449 doi: 10.1016/j.rser.2016.12.073
    [14] 芮小博, 李一博, 曾周末. 压电悬臂梁振动能量收集器研究进展. 振动与冲击, 2020, 39(17): 112-123 (Rui Xiaobo, Li Yibo, Zeng Zhoumo. Research progress of piezoelectric cantilever vibration energy collector. Journal of Vibration and Shock, 2020, 39(17): 112-123 (in Chinese)
    [15] Li P, Liu Y, Wang Y, et al. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure. AIP Advances, 2015, 5(4): 047151 doi: 10.1063/1.4919711
    [16] Liu D, Al-Haik M, Zakaria M, et al. Piezoelectric energy harvesting using L-shaped structures. Journal of Intelligent Material Systems and Structures, 2018, 29(6): 1206-1215 doi: 10.1177/1045389X17730926
    [17] Zhou S, Hobeck JD, Cao J, et al. Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting. Smart Materials and Structures, 2017, 26(3): 035008 doi: 10.1088/1361-665X/26/3/035008
    [18] Rezaei M, Khadem SE, Firoozy P. Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects. International Journal of Engineering Science, 2017, 118: 1-15 doi: 10.1016/j.ijengsci.2017.04.001
    [19] Mak KH, McWilliam S, Popov AA, et al. Performance of a cantilever piezoelectric energy harvester impacting a bump stop. Journal of Sound and Vibration, 2011, 330(25): 6184-6202 doi: 10.1016/j.jsv.2011.07.008
    [20] 陈孝玉, 张旭辉, 左萌等. 拱形−线形非线性磁力耦合压电俘能器建模与特性分析. 振动与冲击, 2021, 40(9): 110-119 (Chen Xiaoyu, Zhang Xuhui, Zuo Meng, et al. Modeling and characteristic analysis of arch-thready nonlinear magnetic coupled piezoelectric energy harvester. Journal of Vibration and Shock, 2021, 40(9): 110-119 (in Chinese)
    [21] Wang W, Cao J, Bowen CR, et al. Multiple solutions of asymmetric potential bistable energy harvesters: numerical simulation and experimental validation. The European Physical Journal B, 2018, 91(10): 1-9
    [22] Sun S, Leng Y, Su X, et al. Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation. Energy Conversion and Management, 2021, 239: 114246 doi: 10.1016/j.enconman.2021.114246
    [23] Zou D, Liu G, Rao Z, et al. Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations. Applied Energy, 2021, 302: 117585 doi: 10.1016/j.apenergy.2021.117585
    [24] Zhou S, Cao J, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
    [25] Zhu P, Ren X, Qin W, et al. Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester. Archive of Applied Mechanics, 2017, 87(9): 1541-1554 doi: 10.1007/s00419-017-1270-9
    [26] Leng Y, Tan D, Liu J, et al. Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation. Journal of sound and vibration, 2017, 406: 146-160 doi: 10.1016/j.jsv.2017.06.020
    [27] Jung J, Kim P, Lee JI, et al. Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets. International Journal of Mechanical Sciences, 2015, 92: 206-222 doi: 10.1016/j.ijmecsci.2014.12.015
    [28] Wang G, Zhao Z, Liao WH, et al. Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mechanical Systems and Signal Processing, 2020, 138: 106571 doi: 10.1016/j.ymssp.2019.106571
    [29] Cao J, Zhou S, Wang W, et al. Influence of potential well depth on nonlinear tristable energy harvesting. Applied Physics Letters, 2015, 106(17): 173903 doi: 10.1063/1.4919532
    [30] Chen X, Zhang X, Wang L, et al. An arch-linear composed beam piezoelectric energy harvester with magnetic coupling design, modeling and dynamic analysis. Journal of Sound and Vibration, 2021: 116394
    [31] Zhao J, Yang J, Lin Z, et al. An arc-shaped piezoelectric generator for multi-directional wind energy harvesting. Sensors and Actuators A:Physical, 2015, 236: 173-179 doi: 10.1016/j.sna.2015.10.047
    [32] 吴吉, 章定国, 黎亮等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019, 51(4): 1134-114 (Wu Ji, Zhang Dingguo, Li Liang, Chen Yuanzhao, Qian Zhenjie. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1134-114 (in Chinese) doi: 10.6052/0459-1879-19-027
    [33] Zhou W, Wang B, Lim CW, et al. A distributed-parameter electromechanical coupling model for a segmented arc-shaped piezoelectric energy harvester. Mechanical Systems and Signal Processing, 2021, 146: 107005 doi: 10.1016/j.ymssp.2020.107005
    [34] 张旭辉, 赖正鹏, 吴中华等. 新型双稳态压电振动俘能系统的理论建模与实验研究. 振动工程学报, 2019, 32(1): 87-96 (Zhang Xuhui, Lai Zhengpeng, Wu Zhonghua, et al. Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system. Journal of Vibration Engineering, 2019, 32(1): 87-96 (in Chinese)
    [35] Zhu P, Ren X, Qin W, et al. Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch Appl Mech, 2017, 87: 45-57 doi: 10.1007/s00419-016-1175-z
    [36] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 76-89 (Tang Wei, Wang Xiaopu, Cao Jingjun. Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics. Acta Physica Sinica, 2014, 63(24): 76-89 (in Chinese)
    [37] Erturk A, Inman DJ. Piezoelectric Energy Harvesting. John Wiley & Sons, 2011
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  100
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 录用日期:  2021-10-20
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回