EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴气流式液体射流分裂液滴粒径研究

郭立梅 吕明 宁智

郭立梅, 吕明, 宁智. 同轴气流式液体射流分裂液滴粒径研究. 力学学报, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-375
引用本文: 郭立梅, 吕明, 宁智. 同轴气流式液体射流分裂液滴粒径研究. 力学学报, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-375
Guo Limei, Lü Ming, Ning Zhi. Study on the droplet size of liquid jet in a coaxial airflow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-375
Citation: Guo Limei, Lü Ming, Ning Zhi. Study on the droplet size of liquid jet in a coaxial airflow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-9 doi: 10.6052/0459-1879-21-375

同轴气流式液体射流分裂液滴粒径研究

doi: 10.6052/0459-1879-21-375
基金项目: 中央高校基本科研业务费专项资金资助项目(2020JBM053)
详细信息
    作者简介:

    吕明, 副教授, 主要研究方向: 射流稳定性. E-mail: lvming@bjtu.edu.cn

  • 中图分类号: O358

STUDY ON THE DROPLET SIZE OF LIQUID JET IN A COAXIAL AIRFLOW

Funds: The project was supported by the (12345678) and (9876543)
  • 摘要: 针对同轴气流式液体射流分裂液滴粒径预测模型缺乏的现状, 结合射流线性稳定性理论, 建立了基于临界模数的同轴气流式黏性液体射流分裂液滴粒径表达式, 在此基础上, 分别研究了气流旋拧(气流同时存在轴向和周向运动)及流体物性(气体可压缩性、液体黏性、气液密度比和表面张力)对液滴粒径的影响规律. 研究发现: 周围气流轴向引射作用和同轴旋转作用均会导致分裂液滴粒径整体呈先增大后减小的趋势; 且在气流仅作同轴旋转运动时, 相同临界模数下气流旋转对分裂液滴粒径的影响较小. 在本文的研究参数范围内, 分裂液滴粒径随气体可压缩性和气液密度比的增加而减小, 随液体黏度和表面张力的增加而增加; 其中, 气体可压缩性在气流作同轴旋转运动时作用效果更强, 液体黏度在气流作同轴引射运动时效果更为显著. 研究结果对同轴气流式液体射流的分裂液滴粒径预测具有一定的理论意义和工程应用价值.

     

  • 图  1  物理模型

    Figure  1.  Physical model

    图  2  高占优模态下射流的扰动空间发展

    Figure  2.  Disturbance spatial development of liquid jet in high critical angular modulus

    图  3  分裂液滴形成示意图

    Figure  3.  Schematic of splitting droplet formation

    图  4  不同周围气流引射速度时分裂液滴粒径

    Figure  4.  Diameter of splitting droplet under different axial velocity of the surrounding airflow

    图  5  不同周围气流旋转速度时分裂液滴粒径

    Figure  5.  Diameter of splitting droplet under different swirling velocity of the surrounding airflow

    图  6  不同周围气体可压缩性时射流分裂液滴粒径

    Figure  6.  Diameter of splitting droplet under different the compressibility of the airflow

    图  7  不同液体黏度时射流分裂液滴粒径(续)

    Figure  7.  Droplet size under different the liquid viscosity (continued)

    7  不同液体黏度时射流分裂液滴粒径

    7.  Droplet size under different the liquid viscosity

    图  8  不同气液密度比时射流分裂液滴粒径

    Figure  8.  Diameter of splitting droplet under different the gas-liquid density ratio

    图  9  不同表面张力时射流分裂液滴粒径(续)

    Figure  9.  Diameter of splitting droplet under different surface tension (continued)

    9  不同表面张力时射流分裂液滴粒径

    9.  Diameter of splitting droplet under different surface tension

    表  1  分裂液滴粒径的比较

    Table  1.   Comparison of the droplet diameter

    ConditionsValue in Ref. [23]Value in Ref. [22]
    U0 = 200 m/s
    d0 = 0.2 mm
    17 μm 64 μm
    下载: 导出CSV

    表  2  三种计算结果与实验结果的比较

    Table  2.   Comparison of three theoretical results with the experimental data

    ConditionsValue in
    Ref. [23]
    Value in
    Ref. [22]
    Value in
    Ref. [24]
    Calculation value
    U0 = 150 m/s
    d0 = 0.2 mm
    20 μm 74 μm 28 μm 31 μm
    U0 = 200 m/s
    d0 = 0.2 mm
    17 μm 64 μm 24 μm 27 μm
    下载: 导出CSV
  • [1] Yoon SS, Heister SD. A fully non-linear model for atomization of high-speed jets. Engineering Analysis with Boundary Elements, 2004, 28(4): 345-357 doi: 10.1016/S0955-7997(03)00083-3
    [2] Park H, Heister SD. Nonlinear simulation of free surfaces and atomization in pressure swirl atomizers. Physics of Fluids, 2006, 18(5): 052103 doi: 10.1063/1.2197876
    [3] 谢茂昭. 内燃机计算燃烧学, 第2版. 大连: 大连理工大学出版社, 2005

    Xie Maozhao. Computational Combustion of Internal Combustion Engine, 2nd edition. Dalian: Dalian University of Technology Press, 2005(in Chinese)
    [4] Sellens RW, Brzustowski TA. A prediction of the drop size distribution in a spray from first principles. Atomization and Spray Technology, 1985, 1(2): 89-102
    [5] Li X, Tankin RS. Droplet size distribution: A derivation of Nukiyama-Tanasawa type distribution function. Combusion Science and Technology, 1987, 56(1/3): 65-76
    [6] Khoshnevis A, Tsai S, Esmaeilzadeh E. Electric field induced sheeting and breakup of dielectric liquid jets. Physics of Fluids, 2014, 26(1): 197-219
    [7] Bodaghkhani A, Muzychka YS, Colbourne B. An analytical model of final average droplet size prediction of wave spray cloud. International Journal of Heat and Fluid Flow, 2018, 74: 110-117 doi: 10.1016/j.ijheatfluidflow.2018.09.012
    [8] Hosseinalipour SM, Karimaei H. A new model based on coupling of MEP/CFD/ILIA for prediction of primary atomization. The Canadian Journal of Chemical Engineering, 2016, 94(4): 792-802 doi: 10.1002/cjce.22447
    [9] Carrier O, Dervin E, Funfschilling D, et al. Formation of satellite droplets in flow-focusing junctions: volume and neck rupture. Microsystem Technologies, 2015, 21(3): 499-507 doi: 10.1007/s00542-013-1905-x
    [10] Hosseinzadeh M, Shirvani M, Ghaemi A. A study on mean drop size and drop size distribution in an eductor liquid–liquid extractor. Separation and Purification Technology, 2018, 201: 205-213 doi: 10.1016/j.seppur.2018.03.020
    [11] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford: Oxford University Press, 1961.
    [12] Qin LZ, Yi R, Yang LJ. Theoretical breakup model in the planar liquid sheets exposed to high-speed gas and droplet size prediction. International Journal of Multiphase Flow, 2017, 98: 158-167
    [13] Gavtash B, Versteeg HK, Hargrave G, et al. Transient aerodynamic atomization model to predict aerosol droplet size of pressurized metered dose inhalers (pMDI). Aerosol Science & Technology, 2017, 51(3): 998-1008
    [14] Kim WT, Mitra S, Li X, et al. A Predictive model for the initial droplet size and velocity distributions in sprays and comparison with experiments. Particle & Particle Systems Characterization, 2003, 20: 135-149
    [15] Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proceedings of the Royal Society of London, 1935, 150(870): 322-327
    [16] Eggers J. Nonlinear dynamics and breakup of free -surface flows. Reviews of Modern Physics, 1997, 69(3): 865-929 doi: 10.1103/RevModPhys.69.865
    [17] Balabel A, Wilson S. A theoretical model for predicting the mean droplet diameter in spray based on the linear stability analysis. International Journal of Control, Automation and Systems, 2013, 2(3): 41-46
    [18] Mohsin M, Uddin J. Break-up and droplet formation in shear thinning compound liquid jets. IMA Journal of Applied Mathematics, 2012, 77(1): 97-108 doi: 10.1093/imamat/hxr075
    [19] Bhatia JC, Durst F. Comparative study of some probability distributions applied to liquid sprays. Particle & Particle Systems Characterization, 1989, 6(1-4): 151-162
    [20] Xu TH, Durst F, Tropea C. The three-parameter log-hyperbolic distribution and its application to particle sizing. Atomization and Sprays, 1993, 3(1): 109-124 doi: 10.1615/AtomizSpr.v3.i1.60
    [21] 阎凯, 宁智, 吕明等. 圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性研究. 力学学报, 2016, 48(3): 566-575 (Yan Kai, Ning Zhi, Lü Ming, et al. Study on correlation of breakup droplet size and velocity distributions of an annular swirling viscous liquid sheet. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 566-575 (in Chinese) doi: 10.6052/0459-1879-15-084
    [22] Teng H, Kinoshita CM, Masutani SM. Prediction of droplet size from the breakup of cylindrical liquid jets. International Journal of Multiphase Flow, 1995, 21(1): 129-136 doi: 10.1016/0301-9322(94)00053-M
    [23] 何学良, 李疏松. 内燃机燃烧学. 北京: 机械工业出版社, 1990

    He Xuliang, Li Shusong. Combustion of Internal Combustion Engine. Beijing: China Machine Press, 1990(in Chinese)
    [24] 严春吉. 液体射流分裂雾化机理及内燃机缸内工作过程的模拟[博士论文]. 大连: 大连海事大学, 2004

    Yan Chunji. Mechanism of liquid jet breakup atomization and Simulation of working process in cylinder of internal combustion engine. [PhD Thesis]. Dalian: Dalian Maritime University, 2004(in Chinese)
    [25] 刘正, 胡国辉, 周哲玮. 同轴旋拧气流中液体射流雾化特性的实验研究. 上海大学学报(自然科学版), 2009, 15(3): 284-289 (Liu Zheng, Hu Guohui, Zhou Zhewei. Experimental investigation on atomization of liquid jet by swirling coaxial gas. Journal of Shanghai University (Natural Science Edition), 2009, 15(3): 284-289 (in Chinese)
    [26] 郑志伟, 仇性启, 李大树等. 同轴气流式液体射流雾化机理研究进展. 工业加热, 2015(4): 13-15 (Zheng Zhiwei, Qiu Xingqi, Li Dashu, et al. Review of liquid jet stability and atomization in a coaxial gas stream. Industrial Heating, 2015(4): 13-15 (in Chinese) doi: 10.3969/j.issn.1002-1639.2015.04.005
    [27] 李进贤, 何浩波, 岳春国等. 旋流式气/液同轴喷嘴常压雾化燃烧实验研究. 宇航学报, 2008, 29(5): 1563-1569 (Li Jinxian, He Haobo, Yue Chunguo, et al. Experimental research on gas/liquid coaxial swirling nozzle of atomization and combustion under normal pressure. Journal of Astronautics, 2008, 29(5): 1563-1569 (in Chinese) doi: 10.3873/j.issn.1000-1328.2008.05.019
    [28] 吕明. 同轴旋转可压缩气体中液体射流及单液滴内空化气泡稳定性研究[博士论文]. 北京: 北京交通大学, 2016

    Lü Ming. Study on the stability of liquid jet in coaxial swirling compressible gas and cavitation bubble within a single droplet. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2016(in Chinese)
    [29] Guo LM, Lü M, Ning Z. Stability of a viscous liquid jet in a coaxial twisting compressible airflow. Processes, 2021, 9(6): 918 doi: 10.3390/pr9060918
    [30] Guo JP, Bai FQ, Chang Q, et al. Investigation on asymmetric instability of cylindrical power-law liquid jets. Energies, 2019, 12(14): 2785 doi: 10.3390/en12142785
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 录用日期:  2021-11-10
  • 网络出版日期:  2021-11-11

目录

    /

    返回文章
    返回