EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向增材制造的熔池凝固组织演变的相场研究

肖文甲 许宇翔 宋立军

肖文甲, 许宇翔, 宋立军. 面向增材制造的熔池凝固组织演变的相场研究. 力学学报, 2021, 53(10): 1-11 doi: 10.6052/0459-1879-21-364
引用本文: 肖文甲, 许宇翔, 宋立军. 面向增材制造的熔池凝固组织演变的相场研究. 力学学报, 2021, 53(10): 1-11 doi: 10.6052/0459-1879-21-364
Xiao Wenjia, Xu Yuxiang, Song Lijun. Phase-field study on the evolution of microstructure of the molten pool for additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 1-11 doi: 10.6052/0459-1879-21-364
Citation: Xiao Wenjia, Xu Yuxiang, Song Lijun. Phase-field study on the evolution of microstructure of the molten pool for additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 1-11 doi: 10.6052/0459-1879-21-364

面向增材制造的熔池凝固组织演变的相场研究

doi: 10.6052/0459-1879-21-364
基金项目: 国家重点研发计划(No.2020YFB2007600), 国家自然科学基金项目(No.51875190), 广东省基础研究与应用基础研究(No.2020A1515110635)资助项目
详细信息
    作者简介:

    宋立军, 教授/主任, 主要研究方向: 激光智能制造、激光制造材料科学相关研究. E-mail: ljsong@hnu.edu.cn

  • 中图分类号: V261.8

PHASE-FIELD STUDY ON THE EVOLUTION OF MICROSTRUCTURE OF THE MOLTEN POOL FOR ADDITIVE MANUFACTURING

  • 摘要: 激光增材制造(Laser Additive Manufacturing, LAM)技术极适合复杂整体构件的近净成形和高附值损伤件的快速修复. 然而, 激光增材制造熔池内部复杂的动态凝固过程显著影响成形件的终态组织, 进而制约其服役性能. 本文针对激光直接能量沉积(Direct energy deposition by laser, DED-L) Inconel 718过程, 构建宏观传热传质与多相场耦合的多尺度数学模型, 解决了熔池宏−微观温度场的直接耦合, 并基于MPI并行程序设计实现了熔池二维的全域定量模拟, 研究了凝固过程中的晶粒演变过程. 结果表明: 模拟的熔池尺寸、凝固界面与实验结果吻合较好. 熔池凝固界面形态和晶体择优取向是影响晶粒演变的重要因素. 在熔池横截面上, 凝固过程主要受温度梯度方向的驱使, 取向与温度梯度方向夹角越小的晶粒占优生长. 在纵截面上, 晶粒的生长表现出弯曲生长以及“上三角”的晶粒特征, 温度梯度方向的渐变导致了晶粒弯曲, 相邻晶粒的竞争行为决定了晶粒形貌. 本文阐明了金属激光增材制造晶粒演变的机理, 有助于厘清增材制造热物理、化学、冶金过程, 为凝固组织的预测和调控提供理论指导. 此外, 该多尺度数学模型也适用于其他金属材料的激光增材制造过程.

     

  • 图  1  宏-微观模拟框架图

    Figure  1.  Macro and micro simulation framework diagram

    图  2  横截面温度场数据拟合和插值过程示意图

    Figure  2.  The schematic diagram of temperature field data fitting and interpolation process

    图  3  MPI并行计算工作原理

    Figure  3.  The MPI parallel computing principle

    图  4  MPI工具的计算效率和结果可靠性分析

    Figure  4.  The analysis of MPI computational efficiency and result reliability

    图  5  实验的熔池形貌与模拟的对比

    Figure  5.  Comparison of the molten pool morphology between the experiment and the simulation

    图  6  激光增材制造Inconel 718横截面凝固组织动态演化过程

    Figure  6.  Dynamic evolution process of solidification microstructure in cross-section of molten pool for laser additive manufacturing Inconel 718

    图  7  横截面的金相组织图

    Figure  7.  Metallographic diagram of cross-section

    图  8  激光增材制造Inconel 718纵截面凝固组织动态演化过程

    Figure  8.  Dynamic evolution process of solidification microstructure in longitudinal-section of molten pool for laser additive manufacturing Inconel 718

    图  9  纵截面的金相组织图

    Figure  9.  Metallographic diagram of longitudinal-section

    表  1  激光直接能量沉积Inconel 718工艺参数

    Table  1.   The processing parameters for DED-L of Inconel 718

    Processing parametersValue
    $ P $, Laser power (W)600
    $ V $, Laser scan speed (mm/s)6
    $ {d}_{L} $, Laser beam diameter (mm)1
    $ F $, Powder feed rate (g/min)9
    $ {s}_{g} $, Shielding gas (Ar, L/min)6
    $ {n}_{g} $, Delivering gas (Ar, L/min)15
    $ n $, Defocus distance (mm)+19
    下载: 导出CSV

    表  2  Inconel 718合金物性参数[21]

    Table  2.   Physical property parameters for Inconel 718 alloy.

    VariablesValue
    $ {T}_{l} $, Liquidus temperature (K)[21]1609
    $ {T}_{m} $, Solidus temperature (K)[21]1533
    $ \rho $, Dendsity (kg·m−3)8190
    $ k $, Partition coefficient[33]0.48
    $ {c}_{\infty } $, Alloy composition (%)5.08
    $ \Gamma $, Gibbs-Thomson coefficient (K·m)[33]3.65 × 10−7
    $ \varepsilon $, Anisotropy[33]0.02
    $ m $, Liquidus slope (K·%)[33]−10.5
    $ {k}_{s} $, Thermal conductivity of solid (J·m−1·s−1·K−1)[21]11.4
    $ {k}_{l} $, Thermal conductivity of liquid (J·m−1·s−1·K−1)[21]28.3
    $ {c}_{p} $, Specific heat (J·kg−1·K−1)[21]435/720
    $ L $, Latent heat (J·kg−1)[33]2.95 × 105
    $ {d}_{0} $, Chemical capillary length (m)[33]6.4 × 10−9
    $ {D}_{L} $, Liquid diffusion coefficient (m2·s−1)[33]3 × 10−9
    $ {A}_{\alpha } $, Laser absorption rate [21]0.26
    下载: 导出CSV
  • [1] Popovich VA, Borisov EV, Popovich AA, et al. Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials and Design, 2017, 114: 441-449 doi: 10.1016/j.matdes.2016.10.075
    [2] 乐方宾, 叶寒, 刘勇. 金属材料增材制造研究与应用. 江西科学, 2020, 38(2): 157-161 (Le Fangbin, Ye Han, Liu Yong. Research and application of metal additive manufacturing. Jiangxi Science, 2020, 38(2): 157-161 (in Chinese)
    [3] 王超, 徐斌, 段尊义等. 面向增材制造的应力最小化连通性拓扑优化. 力学学报, 2021, 53(4): 1070-1080 (Wang Chao, Xu Bin, Duan Zunyi, et al. Additive manufacturing-oriented stress minimization topology optimization with connectivity. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080 (in Chinese) doi: 10.6052/0459-1879-20-389
    [4] Liu F, Lin X, Huang C, et al. The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. Journal of Alloys and Compounds, 2011, 509(13): 4505-4509 doi: 10.1016/j.jallcom.2010.11.176
    [5] Zheng M, Wei L, Chen J, et al. On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy. Journal of Materials Research and Technology, 2021, 11: 392-403 doi: 10.1016/j.jmrt.2021.01.024
    [6] Liu X, Xiao H, Xiao W, et al. Microstructure and Crystallographic Texture of Laser Additive Manufactured Nickel-Based Superalloys with Different Scanning Strategies. Crystals, 2021, 11(6): 591 doi: 10.3390/cryst11060591
    [7] Xiao H, Cheng M, Song L. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing. Journal of Materials Science & Technology, 2021, 60: 216-221
    [8] Ma M, Wang Z, Zeng X. Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Materials Characterization, 2015, 106: 420-427 doi: 10.1016/j.matchar.2015.06.027
    [9] Bermingham MJ, StJohn DH, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Materialia, 2019, 168: 261-274 doi: 10.1016/j.actamat.2019.02.020
    [10] Luo G, Xiao H, Li S, et al. Quasi-continuous-wave laser surface melting of aluminium alloy: Precipitate morphology, solute segregation and corrosion resistance. Corrosion Science, 2019, 152: 109-119 doi: 10.1016/j.corsci.2019.01.035
    [11] Khanzadeh M, Chowdhury S, Marufuzzaman M, et al. Porosity prediction: Supervised-learning of thermal history for direct laser deposition. Journal of Manufacturing Systems, 2018, 47: 69-82 doi: 10.1016/j.jmsy.2018.04.001
    [12] Hooper PA. Melt pool temperature and cooling rates in laser powder bed fusion. Additive Manufacturing, 2018, 22: 548-559 doi: 10.1016/j.addma.2018.05.032
    [13] Guo Q, Zhao C, Qu M, et al. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing. Additive Manufacturing, 2020, 31: 100939 doi: 10.1016/j.addma.2019.100939
    [14] Leung CLA, Marussi S, Atwood RC, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nature Communications, 2018, 9(1): 1355(1-9
    [15] Zhao C, Fezzaa K, Cunningham R W, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Scientific Reports, 2017, 7(1): 3602 doi: 10.1038/s41598-017-03761-2
    [16] Zhang J, Wu L, Zhang Y, et al. Phase field simulation of dendritic microstructure in additively manufactured titanium alloy. Metal Powder Report, 2019, 74(1): 20-24 doi: 10.1016/j.mprp.2018.11.001
    [17] Liu D, Wang Y. Mesoscale multi-physics simulation of rapid solidification of Ti-6Al-4V alloy. Additive Manufacturing, 2019, 25: 551-562 doi: 10.1016/j.addma.2018.12.005
    [18] Ghosh S, Ma L, Ofori-Opoku N, et al. On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni–Nb alloys. Modelling and Simulation in Materials Science and Engineering, 2017, 25(6): 065002 doi: 10.1088/1361-651X/aa7369
    [19] Sahoo S, Chou K. Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process. Additive Manufacturing, 2016, 9: 14-24 doi: 10.1016/j.addma.2015.12.005
    [20] Zhang Z, Tan ZJ, Yao XX, et al. Numerical methods for microstructural evolutions in laser additive manufacturing. Computers & Mathematics with Applications, 2019, 78(7): 2296-2307
    [21] Xiao W, Li S, Wang C, et al. Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys. Materials and Design, 2019, 164: 107553 doi: 10.1016/j.matdes.2018.107553
    [22] Karayagiz K, Johnson L, Seede R, et al. Finite interface dissipation phase field modeling of Ni–Nb under additive manufacturing conditions. Acta Materialia, 2020, 185: 320-339 doi: 10.1016/j.actamat.2019.11.057
    [23] Wang Y, Shi J. Influence of laser scan speed on micro-segregation in selective laser melting of an iron-carbon alloy: A multi-scale simulation study. Procedia Manufacturing, 2018, 26: 941-951 doi: 10.1016/j.promfg.2018.07.121
    [24] Wang Y, Shi J, Liu Y. Competitive grain growth and dendrite morphology evolution in selective laser melting of Inconel 718 superalloy. Journal of Crystal Growth, 2019, 521: 15-29 doi: 10.1016/j.jcrysgro.2019.05.027
    [25] Wang L, Wang N, Provatas N. Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys. Acta Materialia, 2017, 126: 302-312 doi: 10.1016/j.actamat.2016.11.058
    [26] Yu F, Wei Y. Phase-field investigation of dendrite growth in the molten pool with the deflection of solid/liquid interface. Computational Materials Science, 2019, 169: 109128 doi: 10.1016/j.commatsci.2019.109128
    [27] Acharya R, Sharon JA, Staroselsky A. Prediction of microstructure in laser powder bed fusion process. Acta Materialia, 2017, 124: 360-371 doi: 10.1016/j.actamat.2016.11.018
    [28] Li S, Xiao H, Liu K, et al. Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: A comparative study. Materials and Design, 2017, 119: 351-360 doi: 10.1016/j.matdes.2017.01.065
    [29] Karma A. Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett, 2001, 87(11): 115701 doi: 10.1103/PhysRevLett.87.115701
    [30] Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification. Physical Review E, 2004, 70(6Pt1): 061604
    [31] Xing H, Zhang LM, Song KK, et al. Effect of interface anisotropy on growth direction of tilted dendritic arrays in directional solidification of alloys: Insights from phase-field simulations. International Journal of Heat and Mass Transfer, 2017, 104: 607-614 doi: 10.1016/j.ijheatmasstransfer.2016.08.096
    [32] Xiao W, Xu Y, Xiao H, et al. Investigation of the Nb element segregation for laser additive manufacturing of nickel-based superalloys. International Journal of Heat and Mass Transfer, 2021, 180: 121800 doi: 10.1016/j.ijheatmasstransfer.2021.121800
    [33] Nie P, Ojo O A, et al. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Materialia, 2014, 77: 85-95 doi: 10.1016/j.actamat.2014.05.039
    [34] Keller T, Lindwall G, Ghosh S, et al. Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys. Acta Materialia, 2017, 139: 244-253 doi: 10.1016/j.actamat.2017.05.003
    [35] 朱昶胜, 金显, 邓新等. 基于MPI并行的PF-LBM三维枝晶生长模型模拟计算. 兰州理工大学学报, 2018, 44(2): 27-33 (Zhu Changsheng, Jin Xian, Deng Xin, et al. Simulation computation of MPI-based parallel PF-LBM 3-D dendritic growth model. Journal of Lanzhaou University of Technology, 2018, 44(2): 27-33 (in Chinese)
    [36] Zinovieva O, Zinoviev A, Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Computational Materials Science, 2018, 141: 207-220 doi: 10.1016/j.commatsci.2017.09.018
    [37] DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 2018, 92: 112-224 doi: 10.1016/j.pmatsci.2017.10.001
    [38] Wei HL, Elmer JW, DebRoy T. Origin of grain orientation during solidification of an aluminum alloy. Acta Materialia, 2016, 115: 123-131 doi: 10.1016/j.actamat.2016.05.057
    [39] Tan XP, Chandra S, Kok Y, et al. Revealing competitive columnar grain growth behavior and periodic microstructural banding in additively manufactured Ti-6Al-4 V parts by selective electron beam melting. Materialia, 2019, 7: 100365 doi: 10.1016/j.mtla.2019.100365
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  44
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-08-30

目录

    /

    返回文章
    返回