EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部偏转吻切方法的多级压缩乘波体设计

郑晓刚 朱呈祥 尤延铖

郑晓刚, 朱呈祥, 尤延铖. 基于局部偏转吻切方法的多级压缩乘波体设计. 力学学报, 2022, 54(3): 601-611 doi: 10.6052/0459-1879-21-357
引用本文: 郑晓刚, 朱呈祥, 尤延铖. 基于局部偏转吻切方法的多级压缩乘波体设计. 力学学报, 2022, 54(3): 601-611 doi: 10.6052/0459-1879-21-357
Zheng Xiaogang, Zhu Chengxiang, You Yancheng. Design of multistage compression waverider based on the local-turning osculating cones method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 601-611 doi: 10.6052/0459-1879-21-357
Citation: Zheng Xiaogang, Zhu Chengxiang, You Yancheng. Design of multistage compression waverider based on the local-turning osculating cones method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 601-611 doi: 10.6052/0459-1879-21-357

基于局部偏转吻切方法的多级压缩乘波体设计

doi: 10.6052/0459-1879-21-357
基金项目: 国家自然科学基金(51276151, 91441128)和国家自然科学基金企业创新发展联合基金(U21B6003)
详细信息
    作者简介:

    尤延铖, 教授, 主要研究方向: 高超声速空气动力学、高超声速进气道设计. E-mail: yancheng.you@xmu.edu.cn

  • 中图分类号: V211.5

DESIGN OF MULTISTAGE COMPRESSION WAVERIDER BASED ON THE LOCAL-TURNING OSCULATING CONES METHOD

  • 摘要: 乘波体因优异的气动特性, 被认为是突破现有“升阻比屏障”的有效途径之一, 已成为高超声速飞行器气动设计的研究热点. 针对常规单级压缩乘波前体压缩量不足的问题, 基于局部偏转吻切方法提出一种多级压缩乘波体设计方法, 实现了多道非轴对称激波的逆向乘波设计. 通过引入多道非轴对称激波, 可充分发挥乘波前体的预压缩效果, 并为复杂外形条件下的高超声速飞行器设计提供新的思路. 以基于非轴对称椭圆锥激波的两级压缩乘波体为例阐述了该多级设计方法, 并在相同条件下设计了3种不同长短轴比的两级椭圆锥压缩乘波体. 设计状态下的数值模拟结果表明, 无黏条件下, 该设计方法得到的壁面压力分布与CFD结果基本一致, 且对应气动力参数的最大误差仅为0.3%左右, 证明了该方法的可靠性. 相较于两级圆锥压缩乘波体, 长短轴比大于1的两级压缩乘波体拥有更好的压缩性能和升阻特性, 但总压恢复系数和容积特性有所下降, 而长短轴比小于1的两级压缩乘波体性能恰好与之相反. 黏性条件下, 此类乘波体的激波系结构变化不大, 两道椭圆锥激波在底部截面基本相交, 仍具备较佳的乘波特性.

     

  • 图  1  局部偏转吻切方法示意图[22]

    Figure  1.  Schemaitc of LTOCs method[22]

    图  2  两级椭圆锥压缩乘波体设计示意图

    Figure  2.  Schemaitc for the design of dual elliptic cone compression waveriders

    图  3  虚拟子午面内流线与第二道激波相交示意图

    Figure  3.  Schemaitc for the intersection of the streamline with the second shock in the fictional meridian plane

    图  4  第二级压缩面特性线网格跨度过大示意图

    Figure  4.  Schemaitc for the large characteristic grids of the second compression surface

    图  5  基于压力梯度的特征线网格自适应加密技术

    Figure  5.  Adaptive refinement of characteristic grids based on the streamwise pressure gradient

    图  6  各乘波体设计平面激波形状对比

    Figure  6.  Comparison of SWPCs in the design plane

    图  7  各乘波体设计下表面形状对比

    Figure  7.  Comparison of lower surfaces

    图  8  双椭球几何模型示意图

    Figure  8.  Schematic of double ellipsoid model

    图  9  双椭球模型结构网格示意图

    Figure  9.  Schematic of structured-grids for the double ellipsoid model

    图  10  双椭球模型对称面压力分布对比

    Figure  10.  Comparison of pressure distribution on the symmetric plane

    图  11  无黏条件下Case C对称面激波形状对比

    Figure  11.  Comparison of shock waves on the symmetric plane for Case C under inviscid conditions

    图  12  Case C无黏壁面压力分布对比

    Figure  12.  Comparison of pressure distribution on the lower surface for Case C under inviscid conditions

    图  13  无黏条件下两级椭圆锥压缩乘波体不同流向截面内壁面压力分布对比

    Figure  13.  Comparison of pressure distribution in different streamwise planes under inviscid conditions

    图  14  黏性条件下Case C激波系结构

    Figure  14.  Configurations of shock waves for Case C under viscous conditions

    表  1  各乘波体几何参数对比

    Table  1.   Comparison of geometric parameters

    Case ACase BCase C
    Lw/m1.4001.4001.400
    W/m1.0430.9230.815
    H/m0.2680.2750.283
    Vol/m30.0750.0650.056
    Sp/m20.8610.7610.671
    Sb/m20.1820.1600.139
    η0.2060.2130.218
    下载: 导出CSV

    表  2  Case C无黏气动力参数对比

    Table  2.   Comparison of inviscid aerodynamic parameters for Case C

    CLCDL/D
    LTOCs0.1120.0382.971
    CFD0.1120.0382.979
    error/%−0.1140.164−0.277
    下载: 导出CSV

    表  3  乘波体无黏性能参数对比

    Table  3.   Comparison of invisicd performance parameters for three waveriders

    Case ACase BCase C
    $\alpha $3.4753.3733.197
    $\sigma $0.9020.9180.932
    $\varepsilon $0.0120.0050.016
    $\pi $6.4446.1095.613
    $\overline {Ma} $4.2894.3444.425
    ${C_{\rm{L}}}$0.1320.1240.112
    ${C_{\rm{D}}}$0.0420.0400.038
    $L/D$3.1313.0582.979
    下载: 导出CSV

    表  4  乘波体有黏气动性能参数对比

    Table  4.   Comparison of viscous aerodynamic parameters for three waveriders

    ViscosityCLCDL/D
    Case Ainviscid0.1320.0423.131
    viscous0.1300.0472.764
    Case Binviscid0.1240.0403.058
    viscous0.1210.0452.689
    Case Cinviscid0.1120.0382.979
    viscous0.1100.0422.598
    下载: 导出CSV
  • [1] Bertin JJ, Cummings RM. Fifty years of hypersonics: where we’ve been, where we’re going. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536 doi: 10.1016/S0376-0421(03)00079-4
    [2] Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles. Progress in Aerospace Sciences, 2016, 84: 1-28 doi: 10.1016/j.paerosci.2016.04.001
    [3] 尤延铖, 梁德旺, 郭荣伟等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述. 力学进展, 2009, 39(5): 513-525 (You Yancheng, Liang Dewang, Guo Rongwei, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese)
    [4] Zuo FY, Mölder S. Hypersonic wavecatcher intakes and variable- geometry turbine based combined cycle engines. Progress in Aerospace Sciences, 2019, 106: 108-144 doi: 10.1016/j.paerosci.2019.03.001
    [5] 刘薇, 龚海华. 国外高超声速飞行器发展历程综述. 飞航导弹, 2020, 3: 20-27 (Liu Wei, Gong Haihua. Review of hypersonic vehicles in foreign countries. Aerodynamic Missile Journal, 2020, 3: 20-27 (in Chinese)
    [6] Kuechemann D. The Aerodynamic Design of Aircraft. Oxford: Pergamon Press, 1978: 448-510
    [7] Nonweiler TRF. Aerodynamic problems of manned space vehicles. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528 doi: 10.1017/S0368393100071662
    [8] Ding F, Liu J, Shen C, et al. An overview of research on waverider design methodology. Acta Astronautica, 2017, 140: 190-205
    [9] Jones JG, Moore KC, Pike J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields. Ingenieur-Archiv, 1968, 37(1): 56-72 doi: 10.1007/BF00532683
    [10] Rasmussen ML, Jischke MC, Kim BS. Optimization of waverider configurations generated from axisymmetricconical flows. Journal of Spacecraft and Rockets, 1983, 20(5): 461-469 doi: 10.2514/3.25630
    [11] Sobieczky H, Dougherty FC, Jones K. Hypersonic waverider design from given shock waves//First International Waverider Symposium, University of Maryland, 1990: 1-20
    [12] Sobieczky H, Zores B, Wang Z. High speed flow design using the theory of osculating cones and axisymmetric flows. Chinese Journal of Aeronautics, 1999, 12(1): 1-8
    [13] Rodi P. The osculating flowfield method of waverider geometry generation//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 511
    [14] Zhao ZT, Huang W, Li Y, et al. An overview of research on wide-speed range waverider configuration. Progress in Aerospace Sciences, 2020, 113: 100606 doi: 10.1016/j.paerosci.2020.100606
    [15] Liu J, Liu Z, Wen X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number. Acta Astronautica, 2019, 162: 160-167
    [16] Li S, Li L, Huang W, et al. Design and investigation of equal cone-variable Mach number waverider in hypersonic flow. Aerospace Science and Technology, 2020, 96: 105540 doi: 10.1016/j.ast.2019.105540
    [17] Liu C, Liu Q, Bai P, et al. Planform-customized waverider design integrating with vortex effect. Aerospace Science and Technology, 2019, 86: 438-443 doi: 10.1016/j.ast.2019.01.029
    [18] 刘传振, 白鹏, 王骥飞等. 给定前缘线平面形状的密切锥乘波体设计方法. 力学学报, 2019, 51(4): 991-997 (Liu Chuanzhen, Bai Peng, Wang Jifei, et al. Osculating cone waverider design by customizing the planform shape of leading edge. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 991-997 doi: 10.6052/0459-1879-18-368
    [19] Li Y, Shi C, Zheng X, et al. Dual waverider to integrate external and internal flows. Journal of Aircraft, 2020, 57(3): 428-439 doi: 10.2514/1.C035577
    [20] Li Y, Zheng X, Shi C, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept. Aerospace Science and Technology, 2020, 107: 106266 doi: 10.1016/j.ast.2020.106266
    [21] Zheng X, Li Y, Zhu C, et al. Multiple osculating cones’ waverider design method for ruled shock surfaces. AIAA Journal, 2020, 58(2): 854-866
    [22] Zheng X, Hu Z, Li Y, et al. Local-turning osculating cones method for waverider design. AIAA Journal, 2020, 58(8): 3499-3513
    [23] Borg MP, Schneider SP. Effect of freestream noise on roughness- induced transition for the X-51 A forebody. Journal of Spacecraft and Rockets, 2008, 45(6): 1106-1116 doi: 10.2514/1.38005
    [24] 刘嘉, 王发民. 乘波前体构型设计与压缩性能分析. 工程力学, 2003, 20(6): 130-134 (Liu Jia, Wang Famin. Waverider configuration design and forebody compressibility analysis. Engineering Mechanics, 2003, 20(6): 130-134 (in Chinese) doi: 10.3969/j.issn.1000-4750.2003.06.023
    [25] 吕侦军, 王江峰. 多级压缩锥导/吻切锥乘波体设计与对比分析. 北京航空航天大学学报, 2015, 41(11): 2103-2109 (Lü Zhenjun, Wang Jiangfeng. Design and comparative analysis of multistage compression cone-derived waverider and osculating cone waverider. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2103-2109 (in Chinese)
    [26] 吕侦军, 王江峰, 伍贻兆等. 多级压缩锥导乘波体设计与分析. 宇航学报, 2015, 36(5): 518-523 (Lü Zhenjun, Wang Jiangfeng, Wu Yizhao, et al. Design and analysis of multistage compression cone-derived waverider configuration. Journal of Astronautics, 2015, 36(5): 518-523 (in Chinese) doi: 10.3873/j.issn.1000-1328.2015.05.005
    [27] 吕侦军, 王旭东, 季卫栋等. 三级压缩锥导乘波体设计技术与实验分析. 实验流体力学, 2015, 29(5): 38-44 (Lü Zhenjun, Wang Xudong, Ji Weidong, et al. Design and experimental analysis of three-stage compression cone-derived waverider. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 38-44 (in Chinese)
    [28] Wang X, Wang J, Lü Z. A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles. Acta Astronautica, 2016, 126: 424-438 doi: 10.1016/j.actaastro.2016.06.022
    [29] 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法与性能分析. 力学学报, 2011, 43(6): 1077-1082 (He Xuzhao, Ni Hongli. Osculating curved cone waverider: design methods and performance analysis. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2010-502
    [30] 卫锋, 丁国昊, 马志成等. 密切曲面锥导乘波体的设计与理论分析. 推进技术, 2021, 42(2): 298-308 (Wei Feng, Ding Guohao, Ma Zhicheng, et al. Design and theoretical analysis of osculating curve cone derived wave-rider. Journal of Propulsion Technology, 2021, 42(2): 298-308 (in Chinese)
    [31] Huang G, Zuo F, Qiao W. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration. Aerospace Science and Technology, 2018, 74: 160-172 doi: 10.1016/j.ast.2018.01.012
    [32] 赵玉新, 蓝庆生, 赵一龙. 三维曲面激波反问题的参考平面解法. 推进技术, 2018, 39(11): 2454-2462 (Zhao Yuxin, Lan Qingsheng, Zhao Yilong. Reference plane method for inverse problem of three-dimensional curved shock wave. Journal of Propulsion Technolody, 2018, 39(11): 2454-2462 (in Chinese)
    [33] 赵玉新, 蓝庆生, 赵一龙等. 三维超声速压力反问题的特征线求解技术. 推进技术, 2018, 39(10): 2340-2350 (Zhao Yuxin, Lan Qingsheng, Zhao Yilong, et al. A characteristic method for solving three-dimensional supersonic pressure inverse problems. Journal of Propulsion Technology, 2018, 39(10): 2340-2350 (in Chinese)
    [34] 乔文友, 黄国平, 夏晨等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法. 航空动力学报, 2014, 29(6): 1444-1452 (Qiao Wenyou, Huang Guoping, Xia Chen, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet. Journal of Aerospace Power, 2014, 29(6): 1444-1452 (in Chinese)
    [35] 李素循, 陈永康, 李玉林. 典型外形高超声速流动特性. 北京: 国防工业出版社, 2007

    Li Suxu, Chen Yongkang, Li Yulin. Characteristics of Hypersonic Flows for Typical Shapes. Beijing: National Defense Industry Press, 2007 (in Chinese)
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  233
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 录用日期:  2021-11-15
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回