DESIGN OF MULTISTAGE COMPRESSION WAVERIDER BASED ON THE LOCAL-TURNING OSCULATING CONES METHOD
-
摘要: 乘波体因优异的气动特性, 被认为是突破现有“升阻比屏障”的有效途径之一, 已成为高超声速飞行器气动设计的研究热点. 针对常规单级压缩乘波前体压缩量不足的问题, 基于局部偏转吻切方法提出一种多级压缩乘波体设计方法, 实现了多道非轴对称激波的逆向乘波设计. 通过引入多道非轴对称激波, 可充分发挥乘波前体的预压缩效果, 并为复杂外形条件下的高超声速飞行器设计提供新的思路. 以基于非轴对称椭圆锥激波的两级压缩乘波体为例阐述了该多级设计方法, 并在相同条件下设计了3种不同长短轴比的两级椭圆锥压缩乘波体. 设计状态下的数值模拟结果表明, 无黏条件下, 该设计方法得到的壁面压力分布与CFD结果基本一致, 且对应气动力参数的最大误差仅为0.3%左右, 证明了该方法的可靠性. 相较于两级圆锥压缩乘波体, 长短轴比大于1的两级压缩乘波体拥有更好的压缩性能和升阻特性, 但总压恢复系数和容积特性有所下降, 而长短轴比小于1的两级压缩乘波体性能恰好与之相反. 黏性条件下, 此类乘波体的激波系结构变化不大, 两道椭圆锥激波在底部截面基本相交, 仍具备较佳的乘波特性.Abstract: Due to its outstanding aerodynamic performance, the waverider is considered as one of the effective ways to break through the current “lift-to-drag barrier”. It has become the research hotspot for hypersonic vehicle design. However, the traditional waverider is widely generated by a single shock wave, which cause the lack of compression efficiency. To solve the aforementioned problem, a multistage compression waverider design method for non-axisymmetric shock waves, has been proposed in this paper based the local-turning osculating cones method. With the help of multiple non-axisymmetric shock waves, the pre-compression effect of the waverider forebody is able to be fully exerted, and new design ideas for the design of hypersonic vehicles under complicated geometric conditions can be provided as well. The double compression waverider with two elliptic cone shock waves was specified as an example to introduce the new proposed method in detail. Three types of double elliptic cone compression waveriders with different eccentricities were designed under the same conditions. The numerical results demonstrate that under the inviscid conditions, the wall pressure obtained by the proposed design method is basically consistent with the CFD result. The maximum error of the corresponding aerodynamic parameters is about 0.3%, which proves the reliability of this new proposed design method. Compared with the double conical compression waverider, the waverider with eccentricity larger than one has better compression performance and lift-drag characteristics, but lower total pressure recovery coefficient and volumetric efficiency. In contrast, the double compression waverider with eccentricity less than one has larger total pressure recovery coefficient and volumetric efficiency, but lower compression performance and lift-to-drag characteristics. Additionally, the shock structure of the waverider under the viscous conditions remain essentially the same, and the corresponding two elliptic cone shock waves basically intersect at the bottom section. It reveals that this kind of waverider still owns wonderful “wave-ride” characteristics when the viscosity is taken into consideration.
-
表 1 各乘波体几何参数对比
Table 1. Comparison of geometric parameters
Case A Case B Case C Lw/m 1.400 1.400 1.400 W/m 1.043 0.923 0.815 H/m 0.268 0.275 0.283 Vol/m3 0.075 0.065 0.056 Sp/m2 0.861 0.761 0.671 Sb/m2 0.182 0.160 0.139 η 0.206 0.213 0.218 表 2 Case C无黏气动力参数对比
Table 2. Comparison of inviscid aerodynamic parameters for Case C
CL CD L/D LTOCs 0.112 0.038 2.971 CFD 0.112 0.038 2.979 error/% −0.114 0.164 −0.277 表 3 乘波体无黏性能参数对比
Table 3. Comparison of invisicd performance parameters for three waveriders
Case A Case B Case C $\alpha $ 3.475 3.373 3.197 $\sigma $ 0.902 0.918 0.932 $\varepsilon $ 0.012 0.005 0.016 $\pi $ 6.444 6.109 5.613 $\overline {Ma} $ 4.289 4.344 4.425 ${C_{\rm{L}}}$ 0.132 0.124 0.112 ${C_{\rm{D}}}$ 0.042 0.040 0.038 $L/D$ 3.131 3.058 2.979 表 4 乘波体有黏气动性能参数对比
Table 4. Comparison of viscous aerodynamic parameters for three waveriders
Viscosity CL CD L/D Case A inviscid 0.132 0.042 3.131 viscous 0.130 0.047 2.764 Case B inviscid 0.124 0.040 3.058 viscous 0.121 0.045 2.689 Case C inviscid 0.112 0.038 2.979 viscous 0.110 0.042 2.598 -
[1] Bertin JJ, Cummings RM. Fifty years of hypersonics: where we’ve been, where we’re going. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536 doi: 10.1016/S0376-0421(03)00079-4 [2] Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles. Progress in Aerospace Sciences, 2016, 84: 1-28 doi: 10.1016/j.paerosci.2016.04.001 [3] 尤延铖, 梁德旺, 郭荣伟等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述. 力学进展, 2009, 39(5): 513-525 (You Yancheng, Liang Dewang, Guo Rongwei, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese) [4] Zuo FY, Mölder S. Hypersonic wavecatcher intakes and variable- geometry turbine based combined cycle engines. Progress in Aerospace Sciences, 2019, 106: 108-144 doi: 10.1016/j.paerosci.2019.03.001 [5] 刘薇, 龚海华. 国外高超声速飞行器发展历程综述. 飞航导弹, 2020, 3: 20-27 (Liu Wei, Gong Haihua. Review of hypersonic vehicles in foreign countries. Aerodynamic Missile Journal, 2020, 3: 20-27 (in Chinese) [6] Kuechemann D. The Aerodynamic Design of Aircraft. Oxford: Pergamon Press, 1978: 448-510 [7] Nonweiler TRF. Aerodynamic problems of manned space vehicles. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528 doi: 10.1017/S0368393100071662 [8] Ding F, Liu J, Shen C, et al. An overview of research on waverider design methodology. Acta Astronautica, 2017, 140: 190-205 [9] Jones JG, Moore KC, Pike J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields. Ingenieur-Archiv, 1968, 37(1): 56-72 doi: 10.1007/BF00532683 [10] Rasmussen ML, Jischke MC, Kim BS. Optimization of waverider configurations generated from axisymmetricconical flows. Journal of Spacecraft and Rockets, 1983, 20(5): 461-469 doi: 10.2514/3.25630 [11] Sobieczky H, Dougherty FC, Jones K. Hypersonic waverider design from given shock waves//First International Waverider Symposium, University of Maryland, 1990: 1-20 [12] Sobieczky H, Zores B, Wang Z. High speed flow design using the theory of osculating cones and axisymmetric flows. Chinese Journal of Aeronautics, 1999, 12(1): 1-8 [13] Rodi P. The osculating flowfield method of waverider geometry generation//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 511 [14] Zhao ZT, Huang W, Li Y, et al. An overview of research on wide-speed range waverider configuration. Progress in Aerospace Sciences, 2020, 113: 100606 doi: 10.1016/j.paerosci.2020.100606 [15] Liu J, Liu Z, Wen X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number. Acta Astronautica, 2019, 162: 160-167 [16] Li S, Li L, Huang W, et al. Design and investigation of equal cone-variable Mach number waverider in hypersonic flow. Aerospace Science and Technology, 2020, 96: 105540 doi: 10.1016/j.ast.2019.105540 [17] Liu C, Liu Q, Bai P, et al. Planform-customized waverider design integrating with vortex effect. Aerospace Science and Technology, 2019, 86: 438-443 doi: 10.1016/j.ast.2019.01.029 [18] 刘传振, 白鹏, 王骥飞等. 给定前缘线平面形状的密切锥乘波体设计方法. 力学学报, 2019, 51(4): 991-997 (Liu Chuanzhen, Bai Peng, Wang Jifei, et al. Osculating cone waverider design by customizing the planform shape of leading edge. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 991-997 doi: 10.6052/0459-1879-18-368 [19] Li Y, Shi C, Zheng X, et al. Dual waverider to integrate external and internal flows. Journal of Aircraft, 2020, 57(3): 428-439 doi: 10.2514/1.C035577 [20] Li Y, Zheng X, Shi C, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept. Aerospace Science and Technology, 2020, 107: 106266 doi: 10.1016/j.ast.2020.106266 [21] Zheng X, Li Y, Zhu C, et al. Multiple osculating cones’ waverider design method for ruled shock surfaces. AIAA Journal, 2020, 58(2): 854-866 [22] Zheng X, Hu Z, Li Y, et al. Local-turning osculating cones method for waverider design. AIAA Journal, 2020, 58(8): 3499-3513 [23] Borg MP, Schneider SP. Effect of freestream noise on roughness- induced transition for the X-51 A forebody. Journal of Spacecraft and Rockets, 2008, 45(6): 1106-1116 doi: 10.2514/1.38005 [24] 刘嘉, 王发民. 乘波前体构型设计与压缩性能分析. 工程力学, 2003, 20(6): 130-134 (Liu Jia, Wang Famin. Waverider configuration design and forebody compressibility analysis. Engineering Mechanics, 2003, 20(6): 130-134 (in Chinese) doi: 10.3969/j.issn.1000-4750.2003.06.023 [25] 吕侦军, 王江峰. 多级压缩锥导/吻切锥乘波体设计与对比分析. 北京航空航天大学学报, 2015, 41(11): 2103-2109 (Lü Zhenjun, Wang Jiangfeng. Design and comparative analysis of multistage compression cone-derived waverider and osculating cone waverider. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2103-2109 (in Chinese) [26] 吕侦军, 王江峰, 伍贻兆等. 多级压缩锥导乘波体设计与分析. 宇航学报, 2015, 36(5): 518-523 (Lü Zhenjun, Wang Jiangfeng, Wu Yizhao, et al. Design and analysis of multistage compression cone-derived waverider configuration. Journal of Astronautics, 2015, 36(5): 518-523 (in Chinese) doi: 10.3873/j.issn.1000-1328.2015.05.005 [27] 吕侦军, 王旭东, 季卫栋等. 三级压缩锥导乘波体设计技术与实验分析. 实验流体力学, 2015, 29(5): 38-44 (Lü Zhenjun, Wang Xudong, Ji Weidong, et al. Design and experimental analysis of three-stage compression cone-derived waverider. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 38-44 (in Chinese) [28] Wang X, Wang J, Lü Z. A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles. Acta Astronautica, 2016, 126: 424-438 doi: 10.1016/j.actaastro.2016.06.022 [29] 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法与性能分析. 力学学报, 2011, 43(6): 1077-1082 (He Xuzhao, Ni Hongli. Osculating curved cone waverider: design methods and performance analysis. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2010-502 [30] 卫锋, 丁国昊, 马志成等. 密切曲面锥导乘波体的设计与理论分析. 推进技术, 2021, 42(2): 298-308 (Wei Feng, Ding Guohao, Ma Zhicheng, et al. Design and theoretical analysis of osculating curve cone derived wave-rider. Journal of Propulsion Technology, 2021, 42(2): 298-308 (in Chinese) [31] Huang G, Zuo F, Qiao W. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration. Aerospace Science and Technology, 2018, 74: 160-172 doi: 10.1016/j.ast.2018.01.012 [32] 赵玉新, 蓝庆生, 赵一龙. 三维曲面激波反问题的参考平面解法. 推进技术, 2018, 39(11): 2454-2462 (Zhao Yuxin, Lan Qingsheng, Zhao Yilong. Reference plane method for inverse problem of three-dimensional curved shock wave. Journal of Propulsion Technolody, 2018, 39(11): 2454-2462 (in Chinese) [33] 赵玉新, 蓝庆生, 赵一龙等. 三维超声速压力反问题的特征线求解技术. 推进技术, 2018, 39(10): 2340-2350 (Zhao Yuxin, Lan Qingsheng, Zhao Yilong, et al. A characteristic method for solving three-dimensional supersonic pressure inverse problems. Journal of Propulsion Technology, 2018, 39(10): 2340-2350 (in Chinese) [34] 乔文友, 黄国平, 夏晨等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法. 航空动力学报, 2014, 29(6): 1444-1452 (Qiao Wenyou, Huang Guoping, Xia Chen, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet. Journal of Aerospace Power, 2014, 29(6): 1444-1452 (in Chinese) [35] 李素循, 陈永康, 李玉林. 典型外形高超声速流动特性. 北京: 国防工业出版社, 2007Li Suxu, Chen Yongkang, Li Yulin. Characteristics of Hypersonic Flows for Typical Shapes. Beijing: National Defense Industry Press, 2007 (in Chinese) -