EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究

时文 田野 郭明明 刘源 张辰琳 钟富宇 乐嘉陵

时文, 田野, 郭明明, 刘源, 张辰琳, 钟富宇, 乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报, 2022, 54(1): 1-10 doi: 10.6052/0459-1879-21-353
引用本文: 时文, 田野, 郭明明, 刘源, 张辰琳, 钟富宇, 乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报, 2022, 54(1): 1-10 doi: 10.6052/0459-1879-21-353
Shi Wen, Tian Ye, Guo Mingming, Liu Yuan, Zhang Chenlin, Zhong Fuyu, Le Jialing. Investigation of flow characteristics and flame stabilization in an ethylene-fueled scramjet combustor. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-10 doi: 10.6052/0459-1879-21-353
Citation: Shi Wen, Tian Ye, Guo Mingming, Liu Yuan, Zhang Chenlin, Zhong Fuyu, Le Jialing. Investigation of flow characteristics and flame stabilization in an ethylene-fueled scramjet combustor. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-10 doi: 10.6052/0459-1879-21-353

乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究

doi: 10.6052/0459-1879-21-353
基金项目: 青年人才托举项目(QT-026)和“1912”项目(001-060)资助
详细信息
    作者简介:

    田野, 副研究员, 主要研究方向: 超燃冲压发动机燃烧组织设计. E-mail: tianye@cardc.cn

  • 中图分类号: V231.2

INVESTIGATION OF FLOW CHARACTERISTICS AND FLAME STABILIZATION IN AN ETHYLENE-FUELED SCRAMJET COMBUSTOR

  • 摘要: 在低飞行马赫数条件下, 乙烯燃料超燃冲压发动机为实现成功点火及稳定燃烧, 常使用先锋氢引燃乙烯, 本文通过试验研究了多种喷注方案下的超燃燃烧室流动特性、火焰传播特性及燃烧稳定性, 喷注方案包括单先锋氢、单乙烯和组合喷注方式. 超燃燃烧室入口马赫数为2.0, 总温为953 K, 总压为0.82 MPa. 多种非接触光学测量手段被应用于超燃冲压发动机流场结构和火焰传播规律的诊断, 包括纹影、CH自发光照相和OH-PLIF, 并使用10 kHz的压力传感器来采集燃烧室上壁面中线处压力. 结果表明: 在无燃料喷注情况下, 发动机内流场会以约450 Hz的主频振荡; 在有燃料喷注情况下, 凹腔上游喷注方式会抑制振荡, 而凹腔台阶下游喷注方式对流场振荡影响较小. OH-PLIF图像结果表明: 先锋火焰是不稳定的, 当先锋氢在凹腔上游喷注时, 先锋火焰主要集中于凹腔中后部, OH基在凹腔中部重复地集聚与扩散; 当先锋氢在凹腔台阶下游喷注时, 先锋火焰呈破碎状分布于剪切层内, 且凹腔后斜坡处无燃烧. 燃料组合喷注时, 燃烧也是不稳定的. 先锋氢关闭后, 火焰从凹腔中部后移至凹腔后斜坡处, 且火焰形态稳定, 组合喷注时的燃烧不稳定现象源于先锋氢燃烧的不稳定性.

     

  • 图  1  设备结构示意图

    Figure  1.  Geometric configuration of facility

    图  2  燃料喷入位置及点火器位置示意图(单位: mm)

    Figure  2.  Schematic of fuel injection and igniter (unit: mm)

    图  3  超燃冲压发动机实验时序图

    Figure  3.  Schematic of operation sequence of tested scramjet

    图  4  无燃料喷入时超声速流场结构

    Figure  4.  Flow structures of supersonic internal flow without fuel injection

    图  5  不同喷注方案下超声速内流场结构示意图

    Figure  5.  Flow structures of supersonic internal flow with different injection strategies

    图  6  Case 1中监测点x=371 mm处压力快速傅里叶变换结果

    Figure  6.  FFT result at x=371 mm in case 1

    图  7  Case 2中监测点x=371 mm处压力快速傅里叶变换结果

    Figure  7.  FFT result at x=371 mm in case 2

    图  8  ϕ=0.3的先锋氢在Jet-1位置喷注时OH基图像

    Figure  8.  OH-PLIF images of cavity with pure H2 of ϕ=0.3 at Jet-1

    图  9  ϕ=0.3的先锋氢在Jet-2位置喷注时OH基图像

    Figure  9.  OH-PLIF images of cavity with pure H2 of ϕ=0.3 at Jet-2

    图  10  ϕ=0.3的先锋氢化学反应区面积动态变化

    Figure  10.  Area of chemical reaction zone (OH) with different jet locations of ϕ=0.3

    图  11  Case 4单乙烯燃烧时OH基动态变化过程

    Figure  11.  Dynamic evolution process of OH with pure C2H4 in case 4

    图  12  Case 4化学反应区面积动态变化

    Figure  12.  Area of chemical reaction zone in case 4

    图  13  CH基图像处理

    Figure  13.  Image processing of CH

    图  14  Case 5中CH基中心横坐标变化

    Figure  14.  X coordinate of CH region center in case 5

    图  15  Case 5中CH基面积变化

    Figure  15.  Area of CH region during case 5

    图  16  不同工况下燃烧室沿程无量纲压力

    Figure  16.  Normalized pressure of combustor in different cases

    图  17  有先锋氢情况下纹影和CH基图

    Figure  17.  Schlieren images and CH with pilot flame of H2

    图  18  无先锋氢情况下纹影和CH基图

    Figure  18.  Schlieren images and CH without pilot flame of H2

    表  1  内流和燃料喷注参数

    Table  1.   Flow parameters of inflow and injection

    ParametersCase1Case2Case3Case4Case5
    jet-1jet-2jet-2jet-2jet-2jet-1
    fuelH2H2C2H4C2H4C2H4H2
    Tt/MPa4.04.01.01.81.04.0
    ϕ0.30.30.10.150.10.3
    Tt/K300300300300300300
    Ma1.01.01.01.01.01.0
    ignite/stable flame×
    下载: 导出CSV
  • [1] 叶家伟, 张顺平, 于欣等. 基于500 Hz OH-PLIF技术的超声速燃烧室火焰结构. 航空动力学报, 2020, 35(12): 2593-2601 (Ye Jiawei, Zhang Shunping, Yu Xin, et al. Flame structure in supersonic combustion chamber based on 500 Hz OH-PLIF technology. Journal of Aerospace Power, 2020, 35(12): 2593-2601 (in Chinese)
    [2] 李西鹏. 超声速气流中煤油喷注混合及点火过程研究. [博士学位论文]. 长沙: 国防科技大学, 2021

    Li Xipeng. Investigation on the mixing, distribution and ignition processes of kerosene in a supersonic crossflow. [PhD Thesis]. Changsha: National University of Defense Technology, 2021 (in Chinese))
    [3] 童福林, 李欣, 于长平等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018, 50(2): 197-208

    Tong Fulin, Li Xin, Yu Changping, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics. 2018, 50(2): 197-208 (in Chinese))
    [4] 欧阳浩. 超燃冲压发动机燃烧室中的非稳态燃烧过程研究. [博士学位论文]. 长沙: 国防科技大学, 2020

    Ou Yanghao. Research on the unsteady combustion process in scramjet combustor. [PhD Thesis]. Changsha: National University of Defense Technology, 2020 (in Chinese))
    [5] Liu CY, Zhao YH, Wang HB, et al. Dynamics and mixing mechanism of transverse jet injection into a supersonic combustor with cavity flameholder. Acta Astronautica, 2017, 136: 90-100 doi: 10.1016/j.actaastro.2017.03.010
    [6] Sun MB, Geng H, Liang JH, et al. Mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of a cavity flameholder. Flow Turbulence and Combustion, 2009, 82: 271-286 doi: 10.1007/s10494-008-9178-7
    [7] Sun MB, Zhang SP, Han X, et al. Parametric experimental and numerical study on mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of cavity flameholders. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2010, 224: 527-540 doi: 10.1243/09544100JAERO694
    [8] 田野, 乐嘉陵, 杨顺华等. 乙烯燃料超燃冲压发动机流场振荡及其控制研究. 推进技术, 2015, 36(7): 961-967 (Tian Ye, Le Jialing, Yang Shunhua, et al. Study on flow oscillation and its control methods in an ethylene-fueled scramjet combutor. Journal of propulsion technology, 2015, 36(7): 961-967 (in Chinese)
    [9] Ma L, Lei QC, Wu Y, et al. From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz. Combustion and Flame, 2016, 165: 1-10 doi: 10.1016/j.combustflame.2015.08.026
    [10] Forster FJ, Droske NC, Buhler MN, et al. Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization. Combustion and Flame, 2016, 168: 204-215 doi: 10.1016/j.combustflame.2016.03.010
    [11] Ben-Yakar A, Kamel M, Morris C, et al. Experimental investigation of H2 transverse jet combustion in hypervelocity flows. AIAA Paper, 97-3019
    [12] Ben-Yakar A, Hanson RK. Supersonic combustion of cross-flow jets and the influence of cavity flame-holders. AIAA Paper, 99-0484
    [13] Wang HB, Wang ZG, Sun MB, et al. Combustion characteristics in a supersonic combustor with hydrogen injection upstream of cavity flameholder. Proceedings of the Combustion Institute, 2013, 34(2): 2073-2082 doi: 10.1016/j.proci.2012.06.049
    [14] Tian Y, Yang SH, Le JL. Study on the effect of air throttling on flame stabilization of an ethylene fueled scramjet combustor. International Journal of Aerospace Engineering, 2015, 2015: 1-10
    [15] Tian Y, Yang SH, Le JL. Study on flame stabilization of a hydrogen and kerosene fueled combustor. Aerospace Science and Technology, 2016, 59: 183-185 doi: 10.1016/j.ast.2016.10.023
    [16] Tian Y, Yang SH, Xiao BG, et al. Experimental study on the effect of air throttling on supersonic combustion. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(3): 472-480 doi: 10.1177/0954410016680234
    [17] Ma FH, Li J, Yang V, et al. Thermoacoustic flow instability in a scramjet combustor. AIAA Paper, 2005-3824
    [18] Li J, Ma FH, Yang V, et al. A comprehensive study of combustion oscillations in a hydrocarbon-fueled scramjet engine. AIAA Paper, 2007-836
    [19] Lin KC, Jackson K, Behdadnia R, et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a recessed cavity flameholder. AIAA Paper, 2007-5382
    [20] 张弯洲, 乐嘉陵, 杨顺华等. Ma 4下超燃发动机乙烯点火及火焰传播过程试验研究. 实验流体力学, 2016, 30(3): 40-46 (Zhang Wanzhou, Le Jialing, Yang Shunhua, et al. Experimental research on ethylene ignition and flame propagation processes for scramjet at Ma4. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 40-46 (in Chinese)
    [21] 田野, 乐嘉陵, 杨顺华等. 氢燃料超燃燃烧室流场结构和火焰传播规律试验研究. 实验流体力学, 2019, 33(1): 72-78 (Tian Ye, Le Jialing, Yang Shunhua, et al. Experimental study on flow structure and flame development in a hydrogen-fueled supersonic combustor. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 72-78 (in Chinese)
    [22] Wang HB, Wang ZG, Sun MB, et al. Experimental study of oscillations in a scramjet combustor with cavity flameholders. Experimental Thermal and Fluid Science, 2013, 45: 259-263 doi: 10.1016/j.expthermflusci.2012.10.013
    [23] Wang HB, Sun MB, Qin N, et al. Characteristics of Oscillations in Supersonic Open Cavity Flows. Flow Turbulence and Combustion, 2013, 90: 121-142 doi: 10.1007/s10494-012-9434-8
    [24] Wang ZG, Sun MB, Wang HB, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor. Proceedings of the Combustion Institute, 2015, 35: 2137-2144 doi: 10.1016/j.proci.2014.09.005
    [25] 赵小存, 雷庆春, 陈力等. 基于高速化学发光测量的超声速燃烧室振荡特性统计学分析. 固体火箭技术, 2021, 44(3): 297-303 (Zhao Xiaocun, Lei Qingchun, Chen Li, et al. Statistical analysis on oscillation behavior of flame in a supersonic combustor based on high-speed chemiluminescene measurements. Journal of Solid Rocket Technology, 2021, 44(3): 297-303
    [26] Yuan YM, Zhang TC, Yao W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence. Proceedings of the Combustion Institute, 2016, 1: 1-7
    [27] Yuan YM, Zhang TC, Yao W, et al. Study on flame stabilization in a dual-Mode combustor using optical measurements. Journal of Propulsion and Power, 2015, 31(6): 1524-1531 doi: 10.2514/1.B35689
    [28] Unalmis OH, Clemens NT, Dolling DS. Cavity oscillation mechanisms in high-speed flows. AIAA Journal, 2004, 42(10): 2035-2041 doi: 10.2514/1.1000
    [29] Lin KC, Jackson K, Behdadnia R, et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity fameholder. Journal of Propulsion and Power, 2010, 26(6): 1161-1169 doi: 10.2514/1.43338
    [30] Micka DJ. Combustion stabilization, structure, and spreading in a laboratory dual-mode scramjet combustor. [PhD Thesis] Michigan: The University of Michigan, 2010
    [31] Wang HB, Wang ZG, Sun MB, et al. Nonlinear analysis of combustion oscillation in a cavity-based supersonic combustor. Science China Technological Sciences, 2013, 56(5): 1093-1101 doi: 10.1007/s11431-013-5198-1
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  15
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 录用日期:  2020-10-13
  • 网络出版日期:  2020-10-14

目录

    /

    返回文章
    返回