EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均匀电场中气泡上升特性的实验研究

陈烁 王太 苏硕 谢英柏 刘春涛

陈烁, 王太, 苏硕, 谢英柏, 刘春涛. 均匀电场中气泡上升特性的实验研究. 力学学报, 2021, 53(10): 2736-2744 doi: 10.6052/0459-1879-21-352
引用本文: 陈烁, 王太, 苏硕, 谢英柏, 刘春涛. 均匀电场中气泡上升特性的实验研究. 力学学报, 2021, 53(10): 2736-2744 doi: 10.6052/0459-1879-21-352
Chen Shuo, Wang Tai, Su Shuo, Xie Yingbai, Liu Chuntao. Experimental investigation on rising behavior of single bubble under the effect of uniform dc electric field. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2736-2744 doi: 10.6052/0459-1879-21-352
Citation: Chen Shuo, Wang Tai, Su Shuo, Xie Yingbai, Liu Chuntao. Experimental investigation on rising behavior of single bubble under the effect of uniform dc electric field. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2736-2744 doi: 10.6052/0459-1879-21-352

均匀电场中气泡上升特性的实验研究

doi: 10.6052/0459-1879-21-352
基金项目: 河北省自然科学基金(E2019502151)和中央高校基本科研业务费专项资金(2018MS105)资助项目
详细信息
    作者简介:

    王太, 讲师, 主要研究方向: 多相流动与传热传质. E-mail: wangtai_1986@163.com

  • 中图分类号: TK124

EXPERIMENTAL INVESTIGATION ON RISING BEHAVIOR OF SINGLE BUBBLE UNDER THE EFFECT OF UNIFORM DC ELECTRIC FIELD

  • 摘要: 电场中的气泡对于强化传热有显著的作用, 对于电场中气泡动力学特性的研究对增强换热器效率, 提高能源利用率有重要意义. 为了获得外加电场作用下气泡的动力学特性, 设计与搭建了可视化实验平台. 采用50 kV高压直流电源构建均匀电场, 高清摄像机拍摄实验图像. 引入电场强度、气泡体积与溶液介电常数作为变量, 探究其对于气泡动力学特性的影响. 观测了竖直与水平均匀电场中气泡的上升过程, 分析了不同变量下气泡变形状况与上升速度的变化. 引入气泡长宽比L/D用于表示气泡拉伸变形程度, 截取单个气泡上升过程分时段图像展示形态变化过程. 研究结果表明, 气泡沿电场方向伸长, 且电场强度越大, 变形越明显; 竖直电场中气泡伸长导致上升速度增大, 而水平电场中气泡上升速度减小. 气泡尺寸增大, 浮升力作用增强, 气泡上升速度增大. 溶液介电常数增加, 电场力作用明显增加, 气泡变形更加明显.

     

  • 图  1  实验系统与设备示意图

    Figure  1.  Schematic diagram of the experimental system and equipment

    图  2  U = 0 kV与30 kV时气泡的上升过程

    Figure  2.  Rising bubbles at U = 0 kV and U = 30 kV

    图  3  U = 0 kV与30 kV时气泡长宽比L/D随时间的变化

    Figure  3.  Variation of bubble aspect ratio L/D with time at U = 0 kV and U = 30 kV

    图  4  不同电场作用下气泡稳定上升阶段的形状与长宽比

    Figure  4.  Shape and aspect ratio of bubbles in the steady rise phase under the effect of different electric fields

    图  5  不同电场作用下上升气泡的速率与阻力系数变化

    Figure  5.  Variation of the velocity and drag coefficient of rising bubbles under different electric fields

    图  6  50 kV时不同尺寸气泡的变形情况及长宽比变化

    Figure  6.  Deformation and aspect ratio variation of different bubble sizes at 50 kV

    图  7  不同电场作用下溶液介电常数对气泡变形的影响

    Figure  7.  Effect of solution dielectric constant on bubble deformation under different electric fields

    图  8  不同溶液中气泡长宽比L/D随电压的变化

    Figure  8.  Variation of bubble aspect ratio L/D with voltage in different solutions

    图  9  水平电场中不同电压强度下气泡的上升过程

    Figure  9.  Rising bubbles in a horizontal electric field at different voltage intensities

    图  10  水平电场中气泡长宽比L/D随电压的变化

    Figure  10.  Variation of bubble aspect ratio L/D with voltage in a horizontal electric field

    图  11  水平电场中不同电压下上升气泡的速率变化

    Figure  11.  Variation in the rate of rising bubbles at different voltages in a horizontal electric field

    图  12  较大直径气泡在不同电压下的上升过程

    Figure  12.  Large diameter bubbles rising at different voltages

    图  13  水平电场蓖麻油溶液中气泡上升过程

    Figure  13.  Rising of bubbles in castor oil solution in a horizontal electric field

    图  14  不同溶液介电常数中气泡长宽比L/D随电压的变化

    Figure  14.  Variation of bubble aspect ratio L/D with voltage for different solution dielectric constants

  • [1] 郭磊, 刁彦华, 赵耀华等. 电场强化微槽道结构毛细芯蒸发器的传热特性. 化工学报, 2014, 65(S1): 144-151 (Guo Lei, Diao Yanhua, Zhao Yaohua, et al. Heat transfer characteristics of evaporator with rectangular microgrooves under electric field. Chinese Journal of Chemical Engineering, 2014, 65(S1): 144-151 (in Chinese)
    [2] 王军锋, 胡巍瀚, 刘海龙等. 电场作用下气泡分散特性的实验研究. 高电压技术, 2019, 45(11): 3736-3742 (Wang Junfeng, Hu Weihan, Liu Hailong, et al. Experimental investigation on bubble dispersion under electric field. High Voltage Engineering, 2019, 45(11): 3736-3742 (in Chinese)
    [3] Cheng KJ, Chaddock JB. Deformation and stability of drops and bubbles in an electric field. Physics Letters A, 1984, 106(1-2): 51-53 doi: 10.1016/0375-9601(84)90491-2
    [4] Zaghdoudi MC, Lallemand M. Study of the behaviour of a bubble in an electric field: steady shape and local fluid motion. International Journal of Thermal Sciences, 2000, 39: 39-52 doi: 10.1016/S1290-0729(00)00190-2
    [5] Zhang HB, Yan YY, Zu YQ. Numerical modelling of EHD effects on heat transfer and bubble shapes of nucleate boiling. Applied Mathematical Modelling, 2010, 34: 626-638 doi: 10.1016/j.apm.2009.06.012
    [6] Dong W, Li RY, Yu HL, et al. An investigation of behaviours of a single bubble in a uniform electric field. Experimental Thermal and Fluid Science, 2006, 30: 579-586 doi: 10.1016/j.expthermflusci.2005.12.003
    [7] Chen F, Peng Y, Song YZ, et al. EHD behavior of nitrogen bubbles in DC electric fields. Experimental Thermal and Fluid Science, 2007, 32: 174-181 doi: 10.1016/j.expthermflusci.2007.03.006
    [8] Kweon YC, Kim MH, Cho HJ, et al. Study on the deformation and departure of a bubble attached to a wall in DC/AC electric fields. International Journal of Multiphase Flow, 1998, 24(1): 145-162 doi: 10.1016/S0301-9322(97)00044-X
    [9] Diao YH, Guo L, Liu Y, et al. Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves. International Journal of Heat and Mass Transfer, 2014, 78: 371-379 doi: 10.1016/j.ijheatmasstransfer.2014.07.004
    [10] Hristov Y, Zhao D, Kenning DBR, et al. A study of nucleate boiling and critical heat flux with EHD enhancement. Heat Mass Transfer, 2009, 45: 999-1017 doi: 10.1007/s00231-007-0286-z
    [11] Quan XJ, Gao M, Cheng P, et al. An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. International Journal of Heat and Mass Transfer, 2015, 85: 595-608 doi: 10.1016/j.ijheatmasstransfer.2015.01.083
    [12] Zonouzi SA, Aminfar H, Mohammadpourfard M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Applied Thermal Engineering, 2019, 151: 11-25 doi: 10.1016/j.applthermaleng.2019.01.099
    [13] Peng Y, Chen F, Song YZ, et al. Single bubble behavior in direct current electric field. Chinese Journal of Chemical Engineering, 2008, 16(2): 178-183 doi: 10.1016/S1004-9541(08)60059-2
    [14] Herman C, Iacona E. Modeling of bubble detachment in reduced gravity under the influence of electric fields and experimental verification. Heat and Mass Transfer, 2004, 40: 943-957 doi: 10.1007/s00231-003-0488-y
    [15] Zhang W, Wang JF, Li B, et al. EHD effects on periodic bubble formation and coalescence in ethanol under non-uniform electric field. Chemical Engineering Science, 2020, 215: 115451 doi: 10.1016/j.ces.2019.115451
    [16] 杨世杰, 王军锋, 张伟等. 非均匀电场作用下气泡生长及运动特性. 化工进展, 2021, 40(1): 48-56 (Yang Shijie, Wang Junfeng, Zhang Wei, et al. Characteristics of bubble generation and motion under non-uniform electric field. Chemical Industry and Engineering Progress, 2021, 40(1): 48-56 (in Chinese)
    [17] Cho HJ, Kang IS, Kweon YC, et al. Numerical study of the behavior of a bubble attached to a tip in a nonuniform electric field. International Journal of Multiphase Flow, 1998, 24(3): 479-498 doi: 10.1016/S0301-9322(97)00069-4
    [18] Zu YQ, Yan YY. A numerical investigation of electrohydrodynamic (EHD) effects on bubble deformation under pseudo-nucleate boiling conditions. International Journal of Heat and Fluid Flow, 2009, 30: 761-767 doi: 10.1016/j.ijheatfluidflow.2009.03.008
    [19] 杨侠, 杨清, 吴艳阳等. 电场作用下氮气泡行为的数值模拟和实验研究. 化工学报, 2013, 64(11): 3933-3939 (Yang Xia, Yang Qing, Wu Yanyang, et al. Numerical simulation and experimental study on cold air bubbles behavior by electrohydrodynamics effect. Chinese Journal of Chemical Engineering, 2013, 64(11): 3933-3939 (in Chinese)
    [20] Wang T, Li HX, Zhao JF. Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Science and Technology, 2016, 28: 133-142 doi: 10.1007/s12217-016-9490-0
    [21] Ma R, Lu XC, Wang C, et al. Numerical simulation of bubble motions in a coaxial annular electric field under microgravity. Aerospace Science and Technology, 2020, 96: 105525 doi: 10.1016/j.ast.2019.105525
    [22] Sunder S, Tomar G. Numerical simulations of bubble formation from a submerged orifice and a needle: The effects of an alternating electric field. European Journal of Mechanics B-Fluids, 2016, 56: 97-109 doi: 10.1016/j.euromechflu.2015.11.014
    [23] Feng Y, Li HX, Guo KK, et al. Numerical investigation on bubble dynamics during pool nucleate boiling in presence of a non-uniform electric field by LBM. Applied Thermal Engineering, 2019, 155: 637-649 doi: 10.1016/j.applthermaleng.2019.04.110
    [24] Wang T, Li HX, Zhang YF, et al. Numerical simulation of bubble dynamics in a uniform electric field by the adaptive 3D-VOSET method. Numerical Heat Transfer Part A-Applications, 2015, 67: 1352-1369 doi: 10.1080/10407782.2014.965116
    [25] Wang YN, Sun DL, Zhang AL, et al. Numerical simulation of bubble dynamics in the gravitational and uniform electric fields. Numerical Heat Transfer Part B-Fundamentals, 2017, 71(10): 1034-1051 doi: 10.1080/10407782.2017.1330072
    [26] 王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究. 力学学报, 2020, 52(1): 31-39 (Wang Yuerou, Wang Junfeng, Liu Hailong. Numerical simulation on bubble rising behaviors under electric field. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39 (in Chinese) doi: 10.6052/0459-1879-19-193
    [27] Mahlmann S, Papageorgiou DT. Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field. Theoretical and Computational Fluid Dynamics, 2009, 23: 375-399
    [28] Yang QZ, Li BQ, Shao JY, et al. A phase field numerical study of 3D bubble rising in viscous fluids under an electric field. International Journal of Heat and Mass Transfer, 2014, 78: 820-829 doi: 10.1016/j.ijheatmasstransfer.2014.07.039
    [29] Rahmat A, Tofighi N, Yildiz M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method. International Journal of Heat and Fluid Flow, 2016, 62: 313-323 doi: 10.1016/j.ijheatfluidflow.2016.10.001
    [30] Andalib S, Hokmabad BV, Esmaeilzadeh E. Study of a single coarse bubble behavior in the presence of D. C. electric field. Colloid and Surface A: Physicochemical and Engineering Aspects, 2013, 436: 604-617
    [31] Lanbaran DA, Taqizadeh R, Esmailzadeh E, et al. Experimental investigation on pair bubble columns under high voltage DC electric filed. Journal of Electrostatics, 2020, 106: 103456 doi: 10.1016/j.elstat.2020.103456
  • 加载中
图(14)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  108
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 录用日期:  2021-08-31
  • 网络出版日期:  2021-09-01
  • 刊出日期:  2021-10-26

目录

    /

    返回文章
    返回