[1] |
郭磊, 刁彦华, 赵耀华等. 电场强化微槽道结构毛细芯蒸发器的传热特性. 化工学报, 2014, 65(S1): 144-151 (Guo Lei, Diao Yanhua, Zhao Yaohua, et al. Heat transfer characteristics of evaporator with rectangular microgrooves under electric field. Chinese Journal of Chemical Engineering, 2014, 65(S1): 144-151 (in Chinese)
|
[2] |
王军锋, 胡巍瀚, 刘海龙等. 电场作用下气泡分散特性的实验研究. 高电压技术, 2019, 45(11): 3736-3742 (Wang Junfeng, Hu Weihan, Liu Hailong, et al. Experimental investigation on bubble dispersion under electric field. High Voltage Engineering, 2019, 45(11): 3736-3742 (in Chinese)
|
[3] |
Cheng KJ, Chaddock JB. Deformation and stability of drops and bubbles in an electric field. Physics Letters A, 1984, 106(1-2): 51-53 doi: 10.1016/0375-9601(84)90491-2
|
[4] |
Zaghdoudi MC, Lallemand M. Study of the behaviour of a bubble in an electric field: steady shape and local fluid motion. International Journal of Thermal Sciences, 2000, 39: 39-52 doi: 10.1016/S1290-0729(00)00190-2
|
[5] |
Zhang HB, Yan YY, Zu YQ. Numerical modelling of EHD effects on heat transfer and bubble shapes of nucleate boiling. Applied Mathematical Modelling, 2010, 34: 626-638 doi: 10.1016/j.apm.2009.06.012
|
[6] |
Dong W, Li RY, Yu HL, et al. An investigation of behaviours of a single bubble in a uniform electric field. Experimental Thermal and Fluid Science, 2006, 30: 579-586 doi: 10.1016/j.expthermflusci.2005.12.003
|
[7] |
Chen F, Peng Y, Song YZ, et al. EHD behavior of nitrogen bubbles in DC electric fields. Experimental Thermal and Fluid Science, 2007, 32: 174-181 doi: 10.1016/j.expthermflusci.2007.03.006
|
[8] |
Kweon YC, Kim MH, Cho HJ, et al. Study on the deformation and departure of a bubble attached to a wall in DC/AC electric fields. International Journal of Multiphase Flow, 1998, 24(1): 145-162 doi: 10.1016/S0301-9322(97)00044-X
|
[9] |
Diao YH, Guo L, Liu Y, et al. Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves. International Journal of Heat and Mass Transfer, 2014, 78: 371-379 doi: 10.1016/j.ijheatmasstransfer.2014.07.004
|
[10] |
Hristov Y, Zhao D, Kenning DBR, et al. A study of nucleate boiling and critical heat flux with EHD enhancement. Heat Mass Transfer, 2009, 45: 999-1017 doi: 10.1007/s00231-007-0286-z
|
[11] |
Quan XJ, Gao M, Cheng P, et al. An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. International Journal of Heat and Mass Transfer, 2015, 85: 595-608 doi: 10.1016/j.ijheatmasstransfer.2015.01.083
|
[12] |
Zonouzi SA, Aminfar H, Mohammadpourfard M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Applied Thermal Engineering, 2019, 151: 11-25 doi: 10.1016/j.applthermaleng.2019.01.099
|
[13] |
Peng Y, Chen F, Song YZ, et al. Single bubble behavior in direct current electric field. Chinese Journal of Chemical Engineering, 2008, 16(2): 178-183 doi: 10.1016/S1004-9541(08)60059-2
|
[14] |
Herman C, Iacona E. Modeling of bubble detachment in reduced gravity under the influence of electric fields and experimental verification. Heat and Mass Transfer, 2004, 40: 943-957 doi: 10.1007/s00231-003-0488-y
|
[15] |
Zhang W, Wang JF, Li B, et al. EHD effects on periodic bubble formation and coalescence in ethanol under non-uniform electric field. Chemical Engineering Science, 2020, 215: 115451 doi: 10.1016/j.ces.2019.115451
|
[16] |
杨世杰, 王军锋, 张伟等. 非均匀电场作用下气泡生长及运动特性. 化工进展, 2021, 40(1): 48-56 (Yang Shijie, Wang Junfeng, Zhang Wei, et al. Characteristics of bubble generation and motion under non-uniform electric field. Chemical Industry and Engineering Progress, 2021, 40(1): 48-56 (in Chinese)
|
[17] |
Cho HJ, Kang IS, Kweon YC, et al. Numerical study of the behavior of a bubble attached to a tip in a nonuniform electric field. International Journal of Multiphase Flow, 1998, 24(3): 479-498 doi: 10.1016/S0301-9322(97)00069-4
|
[18] |
Zu YQ, Yan YY. A numerical investigation of electrohydrodynamic (EHD) effects on bubble deformation under pseudo-nucleate boiling conditions. International Journal of Heat and Fluid Flow, 2009, 30: 761-767 doi: 10.1016/j.ijheatfluidflow.2009.03.008
|
[19] |
杨侠, 杨清, 吴艳阳等. 电场作用下氮气泡行为的数值模拟和实验研究. 化工学报, 2013, 64(11): 3933-3939 (Yang Xia, Yang Qing, Wu Yanyang, et al. Numerical simulation and experimental study on cold air bubbles behavior by electrohydrodynamics effect. Chinese Journal of Chemical Engineering, 2013, 64(11): 3933-3939 (in Chinese)
|
[20] |
Wang T, Li HX, Zhao JF. Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Science and Technology, 2016, 28: 133-142 doi: 10.1007/s12217-016-9490-0
|
[21] |
Ma R, Lu XC, Wang C, et al. Numerical simulation of bubble motions in a coaxial annular electric field under microgravity. Aerospace Science and Technology, 2020, 96: 105525 doi: 10.1016/j.ast.2019.105525
|
[22] |
Sunder S, Tomar G. Numerical simulations of bubble formation from a submerged orifice and a needle: The effects of an alternating electric field. European Journal of Mechanics B-Fluids, 2016, 56: 97-109 doi: 10.1016/j.euromechflu.2015.11.014
|
[23] |
Feng Y, Li HX, Guo KK, et al. Numerical investigation on bubble dynamics during pool nucleate boiling in presence of a non-uniform electric field by LBM. Applied Thermal Engineering, 2019, 155: 637-649 doi: 10.1016/j.applthermaleng.2019.04.110
|
[24] |
Wang T, Li HX, Zhang YF, et al. Numerical simulation of bubble dynamics in a uniform electric field by the adaptive 3D-VOSET method. Numerical Heat Transfer Part A-Applications, 2015, 67: 1352-1369 doi: 10.1080/10407782.2014.965116
|
[25] |
Wang YN, Sun DL, Zhang AL, et al. Numerical simulation of bubble dynamics in the gravitational and uniform electric fields. Numerical Heat Transfer Part B-Fundamentals, 2017, 71(10): 1034-1051 doi: 10.1080/10407782.2017.1330072
|
[26] |
王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究. 力学学报, 2020, 52(1): 31-39 (Wang Yuerou, Wang Junfeng, Liu Hailong. Numerical simulation on bubble rising behaviors under electric field. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39 (in Chinese) doi: 10.6052/0459-1879-19-193
|
[27] |
Mahlmann S, Papageorgiou DT. Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field. Theoretical and Computational Fluid Dynamics, 2009, 23: 375-399
|
[28] |
Yang QZ, Li BQ, Shao JY, et al. A phase field numerical study of 3D bubble rising in viscous fluids under an electric field. International Journal of Heat and Mass Transfer, 2014, 78: 820-829 doi: 10.1016/j.ijheatmasstransfer.2014.07.039
|
[29] |
Rahmat A, Tofighi N, Yildiz M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method. International Journal of Heat and Fluid Flow, 2016, 62: 313-323 doi: 10.1016/j.ijheatfluidflow.2016.10.001
|
[30] |
Andalib S, Hokmabad BV, Esmaeilzadeh E. Study of a single coarse bubble behavior in the presence of D. C. electric field. Colloid and Surface A: Physicochemical and Engineering Aspects, 2013, 436: 604-617
|
[31] |
Lanbaran DA, Taqizadeh R, Esmailzadeh E, et al. Experimental investigation on pair bubble columns under high voltage DC electric filed. Journal of Electrostatics, 2020, 106: 103456 doi: 10.1016/j.elstat.2020.103456
|