EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚毫米球体撞击液滴过程实验研究

左子文 蒋鹏 王军锋 王林 霍元平

左子文, 蒋鹏, 王军锋, 王林, 霍元平. 亚毫米球体撞击液滴过程实验研究. 力学学报, 2021, 53(10): 2745-2751 doi: 10.6052/0459-1879-21-351
引用本文: 左子文, 蒋鹏, 王军锋, 王林, 霍元平. 亚毫米球体撞击液滴过程实验研究. 力学学报, 2021, 53(10): 2745-2751 doi: 10.6052/0459-1879-21-351
Zuo Ziwen, Jiang Peng, Wang Junfeng, Wang Lin, Huo Yuanping. Experimental investigation of a submillimeter sphere impact on droplet surface. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2745-2751 doi: 10.6052/0459-1879-21-351
Citation: Zuo Ziwen, Jiang Peng, Wang Junfeng, Wang Lin, Huo Yuanping. Experimental investigation of a submillimeter sphere impact on droplet surface. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2745-2751 doi: 10.6052/0459-1879-21-351

亚毫米球体撞击液滴过程实验研究

doi: 10.6052/0459-1879-21-351
基金项目: 国家自然基金资助项目(51806087)
详细信息
    作者简介:

    王军锋, 教授, 主要研究方向: 荷电多相流理论及工程应用研究. E-mail: wangjunfeng@ujs.edu.cn

  • 中图分类号: O363.2

EXPERIMENTAL INVESTIGATION OF A SUBMILLIMETER SPHERE IMPACT ON DROPLET SURFACE

  • 摘要: 球体撞击液面是自然界和工业过程中的普遍现象. 目前相关研究主要关注毫米级及更大尺寸球体撞击水平液面. 对于亚毫米球体撞击过程的动力学特性及液滴弯曲液面对撞击行为的影响仍需深入研究. 本研究基于高速显微数码摄像技术, 开展了不同速度亚毫米球体撞击液滴不同位置的实验研究. 撞击行为呈现振荡和浸入两种模式. 由于液滴弯曲液面的存在, 撞击现象与水平液面不同, 润湿过程中三相接触线 (three phase contact line, TPCL)固定点方位角与撞击角度线性正相关, 非轴对称的空穴在TPCL固定点较高一侧率先形成且曲率半径较大. 揭示了撞击过程中球体主导力变化和能量转化机制. 分析了撞击速度和撞击角度对撞击行为的影响, 并给出了撞击模式图. 结果表明: 冲击阶段形状阻力主导撞击行为, 球体动能损耗量与撞击速度正相关. 空穴发展阶段由表面张力主导, 球体动能转化为维持空穴形状的表面能. 振荡模式空穴长度与韦伯数We正相关, 空穴发展速度差异较小. 根据量纲分析及实验结果拟合得到临界浸入韦伯数Wecr与撞击角度α关系式$We_{cr}^{1/2} $ = α/40.

     

  • 图  1  实验装置示意图

    Figure  1.  Sketch of the experimental set up

    图  2  撞击参数示意图

    Figure  2.  Sketch of impact parameter

    图  3  球体撞击弯曲液面过程

    Figure  3.  Processes of a sphere colliding with gas−liquid interface

    图  4  TPCL固定点方位角

    Figure  4.  The azimuthal angle of TPCL pinned point

    图  5  主导力示意图

    Figure  5.  Sketch of dominant forces

    图  6  冲击阶段球体动能变化(${{\bar u}_1}$ = 0.838 m/s,${{\bar u}_2}$ = 1.045 m/s, ${{\bar u}_3}$ = 1.142 m/s)

    Figure  6.  Kinetic energy variation of spheres in slamming stage (${{\bar u}_1}$ = 0.838 m/s,${{\bar u}_2}$ = 1.045 m/s, ${{\bar u}_3}$ = 1.142 m/s)

    图  7  不同撞击模式的无量纲空穴长度发展过程

    Figure  7.  Development process of dimensionless cavitation length under different impact modes

    图  8  撞击模式图

    Figure  8.  Phase diagrams of impact modes

  • [1] Yan JH, Kai Y, Liu GF, et al. Flexible driving mechanism inspired water strider robot walking on water surface. IEEE Access, 2020, 8: 89643-89654 doi: 10.1109/ACCESS.2020.2993078
    [2] Watson DA, Bom JM, Weinberg MP, et al. Water entry dynamics of spheres with heterogeneous wetting properties. Physical Review Fluids, 2021, 6(4): 4003-4016
    [3] Li Q, Lu L, Cai T. Numerical investigations of trajectory characteristics of a high-speed water-entry projectile. Aip Advances, 2020, 10(9): 095107 doi: 10.1063/5.0011308
    [4] Mu MF, Sjöblom J, Sharma N, et al. Experimental study on the flow field of particles deposited on a gasoline particulate filter. Energies, 2019, 12(14): 2701 doi: 10.3390/en12142701
    [5] Al-Absi AA, Aitani AM, Al-Khattaf SS, et al. Thermal and catalytic cracking of whole crude oils at high severity. Journal of Analytical and Applied Pyrolysis, 2019, 145: 104705
    [6] Bazilevsky AV, Rozhkov AN. Letter: Dome-shaped splashes generated by the impact of a small disk on a sessile water drop. Physics of Fluids, 2018, 30(10): 101702 doi: 10.1063/1.5055232
    [7] Yang L, Wei YJ, Li JC, et al. Experimental study on splash behaviors and cavity shape of elastic spheres during water entry. Applied Ocean Research, 2021, 113: 102754 doi: 10.1016/j.apor.2021.102754
    [8] 黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究. 力学学报, 2019, 51(1): 36-45 (Huang Chao, Wen Xi, Liu Moubi. Study on low-speed water entry of super-hydrophobic small sphere. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 36-45 (in Chinese)
    [9] 卢佳兴, 魏英杰, 王聪等. 圆柱体并联入水过程空泡演化特性实验研究. 力学学报, 2019, 51(2): 450-461 (Lu Jiaxing, Wei Yingjie, Wang Cong, et al. Experimental study on cavity evolution characteristics in the water-entry process of parallel cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 450-461 (in Chinese)
    [10] Güzel B, Korkmaz FC. Experimental investigation of water entry of bodies with constant deadrise angles under hydrophobic effects. Experiments in Fluids, 2021, 62(5): 107 doi: 10.1007/s00348-021-03202-x
    [11] Robbe-Saule M, Morize C, Henaff R, et al. Experimental investigation of tsunami waves generated by granular collapse into water. Journal of Fluid Mechanics, 2021, 907: A11 doi: 10.1017/jfm.2020.807
    [12] Li DQ, Zhang JY, Zhang MD, et al. Experimental study on water entry of spheres with different surface wettability. Ocean Engineering, 2019, 187: 106123 doi: 10.1016/j.oceaneng.2019.106123
    [13] Jamalia M, Rostamijavanani A, Nouri NM, et al. An experimental study of cavity and Worthington jet formations caused by a falling sphere into an oil film on water. Applied Ocean Research, 2020, 102: 102319 doi: 10.1016/j.apor.2020.102319
    [14] 张伟伟, 金先龙. 球体撞击自由液面相关效应的数值模拟方法研究. 船舶力学, 2014, 18(Z1): 28-36 (Zhang Weiwei, Jin Xianlong. Numerical methods for simulating the related effects of sphere impact onto free surface. Journal of Ship Mechanics, 2014, 18(Z1): 28-36 (in Chinese)
    [15] 张佳悦, 李达钦, 吴钦等. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报, 2019, 51(3): 803-812 (Zhang Jiayue, Li Daqin, Wu Qin, et al. Numerical investigation on cavity structures and hydrodynamics of the vehicle during vertical water-entry. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803-812 (in Chinese)
    [16] Aristoff JM, Bush JWM. Water entry of small hydrophobic spheres. Journal of Fluid Mechanics, 2009, 619(45): 45-78
    [17] Truscott TT, Epps B, Belden J. Water entry of projectiles. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378 doi: 10.1146/annurev-fluid-011212-140753
    [18] Lee DG, Kim HY. Impact of a superhydrophobic sphere onto water. Langmuir, 2008, 24(1): 142-145 doi: 10.1021/la702437c
    [19] Lee DG, Kim HY. Sinking of small sphere at low Reynolds number through interface. Physics of Fluids, 2011, 23(7): 072104 doi: 10.1063/1.3614536
    [20] 马庆鹏, 何春涛, 王聪等. 球体垂直入水空泡实验研究. 爆炸与冲击, 2014, 34(2): 174-180 (Ma Qingpeng, He Chuntao, Wang Cong, et al. Experimental investigation on vertical water-entry cavity of sphere. Explosion and Shock Waves, 2014, 34(2): 174-180 (in Chinese)
    [21] 王恒, 孙铁志, 路中磊等. 球体入水空泡演变和运动特性影响试验研究. 爆炸与冲击, 2019, 39(12): 91-99 (Wang Heng, Sun Tiezhi, Lu Zhonglei, et al. Experimental study on the cavity evolution and motion characteristics of spheres into water. Explosion and Shock Waves, 2019, 39(12): 91-99 (in Chinese)
    [22] Aristoff JM, Truscott TT, Techet AH, et al. The water entry of decelerating spheres. Physics of Fluids, 2010, 22(3): 032102 doi: 10.1063/1.3309454
    [23] Liu D, He Q, Evans GM. Penetration behavior of individual hydrophilic particle at a gas-liquid interface. Advanced Powder Technology, 2010, 21(4): 401-411 doi: 10.1016/j.apt.2010.04.004
    [24] Verezub O, Kaptay G, Matsushita T, et al. Penetration dynamics of solid particles into liquids high-speed experimental results and modelling. Materials Science Forum, 2005, 473-474: 429-434
    [25] Chen H, Liu HR, Lu XY, et al. Entrapping an impacting particle at a liquid–gas interface. Journal of Fluid Mechanics, 2018, 841: 1073-1084 doi: 10.1017/jfm.2018.134
    [26] Wang A, Song Q, Yao Q. Study on inertial capture of particles by a droplet in a wide Reynolds number range. Journal of Aerosol Science, 2016, 93: 1-15 doi: 10.1016/j.jaerosci.2015.11.010
    [27] Wang A, Song Q, Yao Q. Behavior of hydrophobic micron particles impacting on droplet surface. Atmospheric Environment, 2015, 115: 1-8 doi: 10.1016/j.atmosenv.2015.05.053
    [28] Ji BQ, Song Q, Wang A, et al. Critical sinking of hydrophobic micron particles. Chemical Engineering Science, 2019, 207: 17-29 doi: 10.1016/j.ces.2019.06.009
    [29] Zhu SJ, Liu RZ, Wang T, et al. Penetration time of hydrophilic micron particles impacting into an unconfined planar gas-liquid interface. Chemical Engineering Science, 2019, 193: 282-297 doi: 10.1016/j.ces.2018.09.027
    [30] Dubrovsky VV, Podvysotsky AM, Shraiber AA. Particle interaction in three-phase polydisperse flows. International Journal of Multiphase Flow, 1992, 18(3): 337-352 doi: 10.1016/0301-9322(92)90021-8
    [31] Sechenyh V, Amirfazli A. An experimental study for impact of a drop onto a particle in mid-air: The influence of particle wettability. Journal of Fluids and Structures, 2016, 66: 282-292 doi: 10.1016/j.jfluidstructs.2016.07.020
    [32] Mitra S, Doroodchi E, Pareek V, et al. Collision behaviour of a smaller particle into a larger stationary droplet. Advanced Powder Technology, 2015, 26(1): 280-295 doi: 10.1016/j.apt.2014.10.008
  • 加载中
图(8)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  79
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 录用日期:  2021-09-22
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2021-10-26

目录

    /

    返回文章
    返回