EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高马赫数燃烧强化的激波风洞试验研究

张旭 张启帆 岳连捷 孟东东 罗苇航 于江鹏 张晓源 李进平 陈宏 李飞

张旭, 张启帆, 岳连捷, 孟东东, 罗苇航, 于江鹏, 张晓源, 李进平, 陈宏, 李飞. 高马赫数燃烧强化的激波风洞试验研究. 力学学报, 2022, 54(5): 1403-1413 doi: 10.6052/0459-1879-21-348
引用本文: 张旭, 张启帆, 岳连捷, 孟东东, 罗苇航, 于江鹏, 张晓源, 李进平, 陈宏, 李飞. 高马赫数燃烧强化的激波风洞试验研究. 力学学报, 2022, 54(5): 1403-1413 doi: 10.6052/0459-1879-21-348
Zhang Xu, Zhang Qifan, Yue Lianjie, Meng Dongdong, Luo Weihang, Yu Jiangpeng, Zhang Xiaoyuan, Li Jinping, Chen Hong, Li Fei. Shock-tunnel experimental study of combustion enhancement methods for a high-mach-number scramjet. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1403-1413 doi: 10.6052/0459-1879-21-348
Citation: Zhang Xu, Zhang Qifan, Yue Lianjie, Meng Dongdong, Luo Weihang, Yu Jiangpeng, Zhang Xiaoyuan, Li Jinping, Chen Hong, Li Fei. Shock-tunnel experimental study of combustion enhancement methods for a high-mach-number scramjet. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1403-1413 doi: 10.6052/0459-1879-21-348

高马赫数燃烧强化的激波风洞试验研究

doi: 10.6052/0459-1879-21-348
基金项目: 国家自然科学基金(U2141220, 11902325)资助项目
详细信息
    作者简介:

    张旭, 博士后, 主要研究方向: 超燃冲压发动机、超声速燃烧空气动力学. E-mail: XuZhangAnder@hotmail.com

    岳连捷, 研究员, 通讯作者, 主要研究方向: 超燃冲压发动机及组合循环发动机、高超声速气体动力学. E-mail: yuelj@imech.ac.cn

  • 中图分类号: O35

SHOCK-TUNNEL EXPERIMENTAL STUDY OF COMBUSTION ENHANCEMENT METHODS FOR A HIGH-MACH-NUMBER SCRAMJET

Funds: The project was supported by the National Natural Science Foundation of China (Grant Nos. 11902325 and 11672309)
  • 摘要: 基于中国科学院力学研究所的JF-24激波风洞, 通过开展高马赫数超燃冲压发动机的直连试验, 研究了高马赫数燃烧的强化方法以及燃料类型对燃烧的影响. 试验段是采用凹腔结构的圆截面燃烧室, 喷孔布置在隔离段, 燃料分别是氢气和乙烯, 当量比均为0.7. 燃料喷注分别采用无支板和小支板两种构型, 后者部分喷孔位于小支板顶部. 两种构型均设置了流向近距双排喷孔, 可分别进行单环和双环喷注. 试验结果论证了飞行马赫数10.0条件下氢气和乙烯在超高速气流中的稳定燃烧性能. 并且, 相比于单环喷注, 双环喷注以及补充小支板可以强化燃烧. 推测其原因是双环射流和激波/分离结构的近距离交互作用很可能改善掺混, 而补充小支板顶部喷注还能利用更多空气组织掺混. 在同样采用双环耦合小支板顶部喷注的强化措施下, 氢气与乙烯燃烧效率接近, 但氢推力性能更优. 这是因为较高热值氢的释热更多. 此外, 试验还证明了在当前来流条件下, 释热受控于掺混, 且高温离解效应限制释热上限. 这是由于释热降低流速且提高静温, 使高温离解的吸热效应更加显著.

     

  • 图  1  JF-24爆轰驱动激波风洞示意图

    Figure  1.  Schematic diagram of JF-24 detonation driven shock tunnel

    图  2  JF-24爆轰驱动激波风洞现场

    Figure  2.  Scene drawings of JF-24 detonation driven shock tunnel

    图  3  激波风洞运行原理图[18]

    Figure  3.  Operation schematic diagram of the shock tunnel[18]

    图  4  试验段燃烧室模型简图 (单位: mm)

    Figure  4.  Schematic diagram of the test-section combustor (unit: mm)

    图  5  小支板喷注局部三维图

    Figure  5.  Local three-dimensional diagram of the small-strut injectors

    图  6  来流参数的重复性

    Figure  6.  Repeatability of the inflow condition

    图  7  喷注压力的时间曲线

    Figure  7.  Injection pressure time curves of all cases

    图  8  不同温度条件$T$下的点火延迟时间${\tau _{{\text{ign}}}}$

    Figure  8.  Ignition delay times ${\tau _{{\text{ign}}}}$ under different temperatures $T$

    图  9  工况A沿程壁面压力分布随时间的变化云图

    Figure  9.  Streamwise wall-pressure distribution time history contour of Case A

    图  10  工况A典型测点的压力变化

    Figure  10.  Typical tap pressure time histories of Case A

    图  11  无支板单环工况A和双环工况B的时均沿程压力分布

    Figure  11.  Time-averaged pressure distributions of single-ring Case A and dual-rings Case B without strut

    图  12  小支板单环工况C和双环工况D的时均沿程压力分布

    Figure  12.  Time-averaged pressure distributions of single-ring Case C and dual-rings Case D with strut

    图  13  单环无支板工况A和小支板工况C的时均沿程压力分布

    Figure  13.  Time-averaged pressure distributions of single-ring Case A without and Case C with strut

    图  14  双环喷注无支板构型B和小支板构型D的时均沿程压力分布

    Figure  14.  Time-averaged pressure distributions of dual-rings Case B without and Case D with strut

    图  15  氢燃料工况D和乙烯燃料工况E的一维压力$p$和马赫数$Ma$分布

    Figure  15.  1-D pressure and Mach number distributions of H2-fueled Case D and C2H4-fueled Case E

    图  16  不同初始温度${T_{{\text{initial}}}}$下等压理论燃烧效率${\eta _{\max }}$

    Figure  16.  Theoretical constant-pressure combustion efficiency ${\eta _{\max }}$ vs. initial temperature ${T_{{\text{initial}}}}$

    图  17  估算燃料沿程的穿透深度${y_p}$

    Figure  17.  Estimated streamwise fuel penetration depths

    图  18  一维流动分析典型的沿程燃烧效率

    Figure  18.  Streamwise combustion efficiency variations by 1-D flow estimations

    表  1  激波管与真空舱的尺寸

    Table  1.   Sizes of the shock tube and vacuum chamber

    Shock tubeVacuum cabin
    damping sectiondriver sectiondriven section
    legth/m2.5137.55.5
    inner diameter/m0.260.130.131.4
    下载: 导出CSV

    表  2  试验段来流条件

    Table  2.   Test-section inflow condition

    $M{a_{{\text{in}}}}$$T_{{\text{in}}}^*$/K$p_{{\text{in}}}^*$/kPa
    4.3380012000
    下载: 导出CSV

    表  3  试验工况条件

    Table  3.   Test case conditions

    CaseConfigurationFuelInjection
    Ano strutH2ring 1
    Bno strutH2rings 1 and 2
    Csmall strutsH2ring 1
    Dsmall strutsH2rings 1 and 2
    Esmall strutsC2H4rings 1 and 2
    下载: 导出CSV

    表  4  各工况燃烧效率$\eta $和推力系数${F_{{\text{tn}}}}$

    Table  4.   Combustion efficiency $\eta $ and thrust coefficient ${F_{{\text{tn}}}}$ of each case

    Case$\eta $/%${F_{{\text{tn}}}}$
    A50.30.061
    B53.40.066
    C49.40.054
    D54.90.069
    E56.00.056
    下载: 导出CSV
  • [1] Andreadis D. Scramjet engines enabling the seamless integration of air & space operation. Industrial Physicist, 2004, 10(4): 24-27
    [2] 李旭彦, 郑星, 薛瑞. 超燃冲压发动机技术发展现状及相关建议. 科技中国, 2019, 2: 5-8 doi: 10.3969/j.issn.1673-5129.2019.03.003
    [3] 卢洪波, 张冰冰, 沈清等. 新建高焓激波风洞Ma = 8飞行模拟条件的实现与超燃实验. 气体物理, 2019, 4(5): 13-24 (Lu Hongbo, Zhang Bingbing, Shen Qing, et al. Flight condition achievement of Mach number 8 in a new shock tunnel of CAAA and its scramjet experimental investigation. Physics of Gases, 2019, 4(5): 13-24 (in Chinese)
    [4] 姚轩宇, 王春, 喻江等. JF12激波风洞高Mach数超燃冲压发动机实验研究. 气体物理, 2019, 4(5): 25-31 (Yao Xuanyu, Wang Chun, Yu Jiang, et al. High-Mach-number scramjet engine tests in JF12 shock tunnel. Physics of Gases, 2019, 4(5): 25-31 (in Chinese)
    [5] 吴里银, 孔小平, 李贤等. 马赫数10超燃冲压发动机激波风洞实验研究. 推进技术, 2021 (Wu Liyin, Kong Xiaoping, Li Xian, et al. Experimental study on a scramjet at Mach 10 in shock tunnel. Journal of Propulsion Technology, 2021 (in Chinese)
    [6] Zhou GX, Zhang X, Li JP, et al. Optical diagnostics in a detonation-driven direct-connected circular combustor fueled with hydrogen for Mach 10 scramjet. International Journal of Hydrogen Energy, 2021, 46(54): 27801-27815
    [7] Grossman PM, Maddalena L, Schetz JA. Flush-wall, diamond-shaped fuel injector for high Mach number scramjets. Journal of Propulsion and Power, 2008, 24(2): 259-266 doi: 10.2514/1.29956
    [8] Drozda TG, Drummond JP, Baurle RA. CFD analysis of mixing characteristics of several fuel injectors at hypervelocity flow conditions//52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
    [9] Turner JC, Smart MK. Application of inlet injection to a three-dimensional scramjet at Mach 8. AIAA Journal, 2010, 48(4): 829-838 doi: 10.2514/1.J050052
    [10] Capra BR, Boyce RR, Kuhn M, et al. Porous versus porthole fuel injection in a radical farming scramjet: numerical analysis. Journal of Propulsion and Power, 2015, 31(3): 789-804 doi: 10.2514/1.B35404
    [11] Landsberg WO, Wheatley V, Smart MK, et al. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet. AIAA Journal, 2018, 56(10): 3802-3807 doi: 10.2514/1.J057417
    [12] Razzaqi SA, Smart MK. Hypervelocity experiments on oxygen enrichment in a hydrogen-fueled scramjet. AIAA Journal, 2011, 49(7): 1488-1497 doi: 10.2514/1.J050866
    [13] Capra BR, Boyce RR, Kuhn M, et al. Combustion enhancement in a scramjet engine using oxygen enrichment and porous fuel injection. Journal of Fluid Mechanics, 2015, 767: 173-198 doi: 10.1017/jfm.2015.43
    [14] Sunami T, Itoh K, Satoh K, et al. Mach 8 ground tests of the hypermixer scramjet for HyShot-IV flight experiment//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006
    [15] Denman ZJ, Wheatley V, Smart MK, et al. Supersonic combustion of hydrocarbons in a shape-transitioning hypersonic engine. Proceedings of the Combustion Institute, 2017, 36: 2883-2891 doi: 10.1016/j.proci.2016.08.081
    [16] 李进平, 张仕忠, 于江鹏等. 以高温燃气为试验介质的爆轰波风洞. 气体物理, 2018, 3(6): 1-8 (Li Jinping, Zhang Shizhong, Yu Jiangpeng, et al. A detonation tunnel with high temperature burnt gas as test medium. Physics of Gases, 2018, 3(6): 1-8 (in Chinese)
    [17] 陆星宇, 李进平, 陈宏等. 爆轰驱动高能起爆技术实验研究. 中国科学, 2019, 49(3): 311-319 (Lu Xingyu, Li Jinping, Chen Hong, et al. Experimental research on high energy initiation technology for detonation driver. Scientia Sinica Technologica, 2019, 49(3): 311-319 (in Chinese) doi: 10.1360/N092018-00029
    [18] Wang YP, Hu ZM, Liu YF, et al. Starting process in a large-scale shock tunnel. AIAA Journal, 2016, 54(4): 1-10
    [19] Mcbride BJ, Zehe MJ, Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species. NASA/TP: 2002-211556
    [20] 李进平, 冯珩, 姜宗林. 激波/边界层相互作用诱导的激波风洞气体污染问题. 力学学报, 2008, 40(3): 290-296 (Li Jinping, Feng Heng, Jiang Zonglin. Gas contamination induced by the interaction of shock/boundary layer in shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 290-296 (in Chinese)
    [21] 李飞, 李西龙, 林鑫等. 用于激波管/激波风洞气流参数诊断的TDLAS系统设计//第十五届全国激波与激波管学术会议, 杭州, 2012年7月

    (Li Fei, Li Xilong, Lin Xin, et al. Design of TDLAS system for the flow parameter measurements in shock tube/shock tunnel//13th National Conference on Shock Waves and Shock Tubes, Hangzhou, July, 2012 (in Chinese))
    [22] Petrova MV, Williams FA. A small detailed chemical-kinetic mechanism for hydrocarbon combustion. Combustion and Flame, 2006, 144(3): 526-544
    [23] Lee J, Lin KC, Eklund D. Challenges in fuel injection for high-speed propulsion systems. AIAA Journal, 2015, 53(6): 1405-1423 doi: 10.2514/1.J053280
    [24] You YC, Luedeke H, Hannemann K, et al. Injection and mixing in a scramjet combustor: DES and RANS studies. Proceedings of the Combustion Institute, 2013, 32: 2083-2092
    [25] Wang ZP, Gu HB, Cheng LW, et al. CH* luminance distribution application and a one-dimensional model of the supersonic combustor heat release quantization. International Journal of Turbo and Jet-engines, 2019, 36(1): 45-50 doi: 10.1515/tjj-2016-0064
    [26] Korkegi RH. Comparison of shock-induced two- and three-dimensional incipient turbulent separation. AIAA Journal, 1975, 13(4): 534-535 doi: 10.2514/3.49750
    [27] Heiser WH, Pratt DT, Hypersonic airbreathing propulsion//AIAA Education Series, 1994
    [28] Gruber MR, Nejadt AS, Chen TH, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream. Journal of Propulsion and Power, 1995, 11(2): 315-323 doi: 10.2514/3.51427
    [29] 杨揖心, 王振国, 孙明波等. 超声速气流中横向气体射流混合经验模型. 航空动力学报, 2015, 30(6): 1391-1399 (Yang Yixing, Wang Zhenguo, Sun Mingbo, et al. A detonation tunnel with high temperature burnt gas as test medium. Journal of Aerospace Power, 2015, 30(6): 1391-1399 (in Chinese)
    [30] Stalker RJ, Truong NK, Morgan RG, Paull A. Effects of hydrogen-air non-equilibrium chemistry on the performance of a model scramjet thrust nozzle. The Aeronautical Journal -New Series-, 2004, 108(1089): 575-584
    [31] 姜宗林. 关于超声速燃烧与高超动力. 力学进展, 2021, 51(1): 130-140 (Jiang ZongLin. On supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2021, 51(1): 130-140 (in Chinese)
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  279
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 录用日期:  2021-09-14
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回