EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转动驱动圆角立方体颗粒有序堆积的离散元模拟

张祺 乔婷 季顺迎 厚美瑛

张祺, 乔婷, 季顺迎, 厚美瑛. 转动驱动圆角立方体颗粒有序堆积的离散元模拟. 力学学报, 2022, 54(2): 336-346 doi: 10.6052/0459-1879-21-341
引用本文: 张祺, 乔婷, 季顺迎, 厚美瑛. 转动驱动圆角立方体颗粒有序堆积的离散元模拟. 力学学报, 2022, 54(2): 336-346 doi: 10.6052/0459-1879-21-341
Zhang Qi, Qiao Ting, Ji Shunying, Hou Meiying. DEM simulation of ordering of cubes with rounded corners by rotation driven. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 336-346 doi: 10.6052/0459-1879-21-341
Citation: Zhang Qi, Qiao Ting, Ji Shunying, Hou Meiying. DEM simulation of ordering of cubes with rounded corners by rotation driven. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 336-346 doi: 10.6052/0459-1879-21-341

转动驱动圆角立方体颗粒有序堆积的离散元模拟

doi: 10.6052/0459-1879-21-341
基金项目: 国家自然科学基金(11502155, U1738120, 11772085), 中国载人航天工程(YYWT-0601-EXP-20)和山西省自然科学基金(201901D211112)资助项目
详细信息
    作者简介:

    厚美瑛, 研究员, 主要研究方向: 颗粒物质动力学及相变. E-mail: mayhou@aphy.iphy.ac.cn

  • 中图分类号: O351

DEM SIMULATION OF ORDERING OF CUBES WITH ROUNDED CORNERS BY ROTATION DRIVEN

  • 摘要: 宏观颗粒体系的有序堆积研究可以为热系统中微观粒子的自组装提供研究模型, 也有助于工业生产中提高颗粒材料的填充率. 实验发现圆筒中的圆角立方体颗粒受容器往复旋转剪切作用会实现有序堆积. 为探究旋转圆筒中立方体颗粒有序堆积过程的内部结构演化过程和动力学机理, 采用超二次曲面方程构造了圆角立方体颗粒, 基于离散元方法对旋转剪切作用下圆角立方体颗粒有序堆积过程开展数值模拟研究. 模拟复现了实验中立方体颗粒从随机堆积状态向有序致密堆积状态转变的过程, 给出了体积分数和有序度参数在容器不同运动条件下随旋转次数增加的变化规律. 结果表明, 立方体颗粒的体积分数和有序度表现为随着容器旋转次数增加而逐渐增大直至稳定的变化趋势. 体系的有序堆积过程由外层颗粒开始逐渐向内部颗粒扩展. 通过调控容器旋转角位移发现颗粒完成有序堆积过程所需的特征旋转次数与容器旋转角位移呈现反比例关系. 旋转角位移过低, 体系只会形成两种颗粒团簇共存的结构, 即某一面平行容器底面的颗粒团簇与面对角线平行重力方向的颗粒团簇共存. 研究也发现在亚重力环境下立方体颗粒同样可以通过容器的旋转实现有序堆积. 重力加速度的减少会抑制立方体颗粒从无序堆积向有序堆积的转变.

     

  • 图  1  装置示意图以及边界旋转方式

    Figure  1.  Schematic diagram of simulation and boundary rotation mode

    图  2  体积分数及有序度随旋转次数的变化

    Figure  2.  Packing fraction $ \varPhi $ and cubatic order parameter $ {S}_{4} $ versus number of rotation

    图  3  立方体颗粒的有序化过程

    Figure  3.  The ordering process of cubic particles

    图  4  $ \gamma $一定, 不同峰值角速度$ {\omega }_{0} $下, 填充率$ \varPhi $和有序度参量$ {S}_{4} $的变化

    Figure  4.  Volume fraction $ \varPhi $ and cubatic order parameter $ {S}_{4} $ versus number of rotation N for $ \gamma $=1.01 and different $ {\omega }_{0} $

    图  5  角速度$ {\omega }_{0} $一定, 不同$ \gamma $下, 填充率$ \varPhi $和有序度参量$ {S}_{4} $的变化

    Figure  5.  Volume fraction $ \varPhi $ and cubatic order parameter $ {S}_{4} $ versus number of rotation N for $ {\omega }_{0} $=5.0 rad/s and different $ \gamma $

    图  6  反转时间一定, 不同$ \gamma $下, 填充率$ \varPhi $和有序度参量$ {S}_{4} $的变化

    Figure  6.  Volume fraction $ \varPhi $ and cubatic order parameter $ {S}_{4} $ versus number of rotation N for the constant inversion time and different $ \gamma $

    图  7  特征旋转次数与旋转角位移的关系

    Figure  7.  Characteristics rotation number versus angular displacement

    图  8  相同$ \beta $值下, 填充率$\varPhi $和有序度参量$ {S}_{4} $的变化曲线.

    Figure  8.  Volume fraction $ \varPhi $ and cubatic order parameter $ {S}_{4} $ versus number of rotation N for the constant $ \beta $

    图  9  不同重力加速度下, 填充率$ \varPhi $和有序度参量$ {S}_{4} $的变化曲线(模拟参数: 边界$ \gamma =4.04 $, 峰值角速度$ {\omega }_{0}=10.0\;\mathrm{ }\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{s} $)

    Figure  9.  Volume fraction $\varPhi $ and order parameter $ {S}_{4} $ versus number of rotation N for different acceleration of gravity ($ \gamma =4.04 $, $ {\omega }_{0}=10.0\;\mathrm{ }\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{s} $)

    表  1  转动驱动立方体颗粒有序堆积过程的主要计算参数

    Table  1.   DEM simulation parameters of ordering of cubes

    ParameterSymbolValue
    density/(kg·m−3)$ \rho $928
    Young's modulus/GPa$ E $2.5
    Poisson's ratio$ \nu $0.2
    damping coefficient (particle-particle)$ {C}_{t} $0.1
    damping coefficient (particle-wall)$ {C}_{tw} $0.1
    sliding friction coefficient (particle-particle)$ {\mu }_{t} $0.3
    sliding friction coefficient (particle-wall)$ {\mu }_{tw} $0.8
    rolling friction coefficient$ {\mu }_{r} $0.005
    下载: 导出CSV
  • [1] Whitesides GM, Grzybowski B. Self-assembly at all scales. Science, 2002, 295(5564): 2418-2421 doi: 10.1126/science.1070821
    [2] Philp D, Stoddart JF. Self-assembly in natural and unnatural systems. Angewandte Chemie International Edition in English, 1996, 35(11): 1154-1196 doi: 10.1002/anie.199611541
    [3] Umbanhowar PB, Melo F, Swinney HL. Localized excitations in a vertically vibrated granular layer. Nature, 1996, 382(6594): 793-796 doi: 10.1038/382793a0
    [4] Umbanhowar PB, Melo F, Swinney HL. Periodic, aperiodic, and transient patterns in vibrated granular layers. Physica A, 1998, 249(1): 1-9
    [5] Reis PM, Ingale RA, Shattuck MD. Crystallization of a quasi-two-dimensional granular fluid. Physical Review Letters, 2006, 96(25): 258001 doi: 10.1103/PhysRevLett.96.258001
    [6] 闫明, 段文山, 陈琼等. 不同形状混合器中二元颗粒的分聚与混合研究. 力学学报, 2016, 48(1): 64-75 (Yan Ming, Duan Wenshan, Chen Qiong, et al. The segregation and mixingofbinarygranular systems inrotatingmixer with differentcross-sections. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 64-75 (in Chinese) doi: 10.6052/0459-1879-15-292
    [7] Rosato AD, Dybenko O, Horntrop DJ, et al. Microstructure evolution in density relaxation by tapping. Physical Review E, 2010, 81(6): 061301 doi: 10.1103/PhysRevE.81.061301
    [8] Tsai JC, Voth GA, Gollub JP. Internal granular dynamics, shear-induced crystallization, and compaction steps. Physical Review Letters, 2003, 91(6): 064301 doi: 10.1103/PhysRevLett.91.064301
    [9] Daniels KE, Behringer RP. Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow. Physical Review Letters, 2005, 94(16): 168001 doi: 10.1103/PhysRevLett.94.168001
    [10] Zhang S, Lin P, Wang M, et al. Flow-induced surface crystallization of granular particles in cylindrical confinement. Scientific Reports, 2021, 11(1): 13227 doi: 10.1038/s41598-021-92136-9
    [11] 李水乡, 赵健, 陆鹏等. 基本三维几何体的最高填充率. 科学通报, 2009, 54(6): 729-733 (Li Shuixiang, Zhao Jian, Lu Peng, et al. Maximum packing densities of basic 3 D objects. Chinese Sci Bull, 2009, 54(6): 729-733 (in Chinese) doi: 10.1360/csb2009-54-6-729
    [12] Scott GD, Kilgour DM. The density of random close packing of spheres. Journal of Physics D, 1969, 2(6): 863-866 doi: 10.1088/0022-3727/2/6/311
    [13] Berryman JG. Random close packing of hard spheres and disks. Physical Review A, 1983, 27(2): 1053-1061 doi: 10.1103/PhysRevA.27.1053
    [14] Carvente O, Ruiz-Suarez JC. Crystallization of confined non-brownian spheres by vibrational annealing. Physical Review Letters, 2005, 95(1): 018001 doi: 10.1103/PhysRevLett.95.018001
    [15] Yu AB, An XZ, Zou RP, et al. Self-Assembly of particles for densest packing by mechanical vibration. Physical Review Letters, 2006, 97(26): 265501 doi: 10.1103/PhysRevLett.97.265501
    [16] Shinde DP, Mehta A, Barker GC. Shaking-induced crystallization of dense sphere packings. Physical Review E, 2014, 89(2): 022204 doi: 10.1103/PhysRevE.89.022204
    [17] Neudecker M, Ulrich S, Herminghaus S, et al. Jammed frictional tetrahedra are hyperstatic. Physical Review Letters, 2013, 111(2): 028001 doi: 10.1103/PhysRevLett.111.028001
    [18] Baker J, Kudrolli A. Maximum and minimum stable random packings of platonic solids. Physical Review E, 2010, 82(6): 061304 doi: 10.1103/PhysRevE.82.061304
    [19] Donev A, Cisse I, Sachs D, et al. Improving the density of jammed disordered packings using ellipsoids. Science, 2004, 303(5660): 990-993 doi: 10.1126/science.1093010
    [20] Torquato S, Jiao Y. Dense packings of the platonic and archimedean solids. Nature, 2009, 461(7257): 876-879
    [21] Boerzsoenyi T, Szabo B, Toeroes G, et al. Orientational order and alignment of elongated particles induced by shear. Physical Review Letters, 2012, 108(22): 228302 doi: 10.1103/PhysRevLett.108.228302
    [22] Hidalgo RC, Zuriguel I, Maza D, et al. Role of particle shape on the stress propagation in granular packings. Physical Review Letters, 2009, 103(11): 118001 doi: 10.1103/PhysRevLett.103.118001
    [23] Asencio K, Acevedo M, Zuriguel I, et al. Experimental study of ordering of hard cubes by shearing. Physical Review Letters, 2017, 119(22): 228002 doi: 10.1103/PhysRevLett.119.228002
    [24] 凡凤仙, 王志强, 刘举等. 竖直振动管中颗粒毛细效应的离散元模拟. 力学学报, 2019, 51(2): 415-424 (Fan Fengxian, Wang Zhiqiang, Liu Ju, et al. DEM simulation of granular capillarity in vertically vibrating tube. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 415-424 (in Chinese) doi: 10.6052/0459-1879-18-262
    [25] Wang SQ, Zhang Q, Ji SY. GPU-based parallel algorithm for super-quadric discrete element method and its applications for non-spherical granular flows. Advances in Engineering Software, 2021, 151: 102931 doi: 10.1016/j.advengsoft.2020.102931
    [26] Zhao TT, Feng YT, Zhang J, et al. Discrete element modelling of dynamic behaviour of rockfills for resisting high speed projectile penetration. Computer Modeling in Engineering and Sciences, 2021, 127(2): 721-735 doi: 10.32604/cmes.2021.015913
    [27] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析. 物理学报, 2018, 67(9): 094501 (Wang Siqiang, Ji Shunying. Discrete element analysis of buffering capacity of non-spherical granular materials based on super-quadric method. Acta Physica Sinica, 2018, 67(9): 094501 (in Chinese) doi: 10.7498/aps.67.20172549
    [28] Barr AH. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 1981, 1(1): 11-23 doi: 10.1109/MCG.1981.1673799
    [29] Podlozhnyuk A, Pirker S, Kloss C. Efficient implementation of superquadric particles in discrete element method within an open-source framework. Computational Particle Mechanics, 2017, 4(1): 101-118 doi: 10.1007/s40571-016-0131-6
    [30] 王嗣强, 季顺迎. 基于CUDA-GPU架构的超二次曲面离散单元并行算法. 应用数学和力学, 2019, 40(7): 751-767 (Wang Siqiang, Ji Shunying. A parallel algorithm for super-quadric discrete elements based on the CUDA-GPU architecture. Applied Mathematics and Mechanics, 2019, 40(7): 751-767 (in Chinese)
    [31] 王嗣强, 季顺迎. 考虑等效曲率的超二次曲面单元非线性接触模型. 力学学报, 2018, 50(5): 1081-1092 (Wang Siqiang, Ji Shunying. Non-linear contact model for super-quadric element considering the equivalent radius of curvature. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1081-1092 (in Chinese) doi: 10.6052/0459-1879-18-103
    [32] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析. 物理学报, 2019, 68(23): 234501 (Wang Siqiang, Ji Shunying. Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method. ActaPhysica Sinica, 2019, 68(23): 234501 (in Chinese) doi: 10.7498/aps.68.20191071
    [33] Batten RD, Stillinger FH, Torquato S. Phase behavior of colloidal superballs: shape interpolation from spheres to cubes. Physical Review E, 2010, 81(6): 061105 doi: 10.1103/PhysRevE.81.061105
    [34] Nowak ER, Knight JB, Ben-Naim E, et al. Density fluctuations in vibrated granular materials. Physical Review E, 1998, 57(2): 1971-1982 doi: 10.1103/PhysRevE.57.1971
    [35] Boton M, Estrada N, Azéma E, et al. Particle alignment and clustering in sheared granular materials composed of platy particles. European Physical Journal E, 2014, 37(11): 116 doi: 10.1140/epje/i2014-14116-0
    [36] Bautista-Carbajal G, Gurin P, Varga S, et al. Phase diagram of hard squares in slit confinement. Scientific reports, 2018, 8(1): 8886 doi: 10.1038/s41598-018-26922-3
    [37] Acevedo M, Hidalgo RC, Zuriguel I, et al. Influence of the feeding mechanism on deposits of square particles. Physical Review E, 2013, 87(1): 012202 doi: 10.1103/PhysRevE.87.012202
    [38] Kanzaki T, Acevedo M, Zuriguel I, et al. Stress distribution of faceted particles in a silo after its partial discharge. The European Physical Journal E, 2011, 34(12): 133 doi: 10.1140/epje/i2011-11133-5
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  145
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2022-01-24
  • 网络出版日期:  2022-01-25
  • 刊出日期:  2022-02-17

目录

    /

    返回文章
    返回