EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种典型高熵合金冲击释能及毁伤特性研究

侯先苇 熊玮 陈海华 张先锋 汪海英 戴兰宏

侯先苇, 熊玮, 陈海华, 张先锋, 汪海英, 戴兰宏. 两种典型高熵合金冲击释能及毁伤特性研究. 力学学报, 2021, 53(9): 2528-2540 doi: 10.6052/0459-1879-21-327
引用本文: 侯先苇, 熊玮, 陈海华, 张先锋, 汪海英, 戴兰宏. 两种典型高熵合金冲击释能及毁伤特性研究. 力学学报, 2021, 53(9): 2528-2540 doi: 10.6052/0459-1879-21-327
Hou Xianwei, Xiong Wei, Chen Haihua, Zhang Xianfeng, Wang Haiying, Dai Lanhong. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540 doi: 10.6052/0459-1879-21-327
Citation: Hou Xianwei, Xiong Wei, Chen Haihua, Zhang Xianfeng, Wang Haiying, Dai Lanhong. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540 doi: 10.6052/0459-1879-21-327

两种典型高熵合金冲击释能及毁伤特性研究

doi: 10.6052/0459-1879-21-327
基金项目: 国家自然科学基金(11790292, 12002170), 中央高校基本科研业务费专项资金(30920021108)和中国空气动力研究与发展中心超高速碰撞研究中心开放基金(20200106)资助项目
详细信息
    作者简介:

    熊玮, 讲师, 主要研究方向: 冲击动力学, 高效毁伤与防护. E-mail: wei.xiong@njust.edu.cn

  • 中图分类号: O381

IMPACT ENERGY RELEASE AND DAMAGE CHARACTERISTICS OF TWO HIGH-ENTROPY ALLOYS

  • 摘要: 为研究FeNiMoW和FeNiCoCr两种典型高熵合金材料的冲击释能规律, 利用Φ14.5 mm弹道枪发射装置和准密闭试验容器系统开展了两种典型高熵合金破片在不同速度下冲击释能效应试验. 进一步, 利用该试验平台开展两种高熵合金破片侵彻多层目标的毁伤特性研究. 通过改变准密闭试验容器前置钢靶厚度, 研究了两种高熵合金破片对后续多层靶板的侵彻毁伤规律. 研究发现: FeNiMoW和FeNiCoCr高熵合金破片分别在1356 m/s和1217 m/s出现能量释放现象. 低于该撞击速度未发生化学反应. 撞击速度对两种高熵合金破片释能有显著的影响, 随着速度的增加, 两种高熵合金破片冲击释能反应加剧, 超压峰值上升加快. 在1600 m/s左右的撞击速度下, 随着试验容器前置钢靶厚度从1 mm增加至5 mm, FeNiMoW破片超压峰值整体上呈上升趋势, FeNiCoCr破片超压峰值呈下降趋势. 在两种高熵合金破片侵彻多层靶标过程中, 其释能反应程度的降低对破片穿孔能力的增强有一定贡献, 而容器前置钢靶厚度的进一步增大将降低破片对后续多层铝靶的穿孔毁伤能力. 另一方面, 随着前置钢靶厚度的增大, 破片对第一层铝靶的毁伤面积先增大后减小.

     

  • 图  1  测试样品制备流程

    Figure  1.  The preparation process of test samples

    图  2  测试破片

    Figure  2.  The test fragments

    图  3  试验布局图

    Figure  3.  The test layout

    图  4  破片侵彻不同厚度钢靶后对多层靶板毁伤测试布局图

    Figure  4.  Layout of multi-layered plates after fragments penetrate into steel-target with different thicknesses

    5  典型破片进入容器内的试验现象

    5.  The impact reaction of typical fragments in the chamber

    图  5  典型破片进入容器内的试验现象(续)

    Figure  5.  The impact reaction of typical fragments in the chamber (continued)

    图  6  FeNiMoW破片典型速度冲击反应现象

    Figure  6.  Typical velocities impact reaction of FeNiMoW fragments

    图  7  FeNiCoCr破片典型速度冲击反应现象

    Figure  7.  Typical velocities impact reaction of FeNiCoCr fragments

    图  8  不同破片在典型速度下的压力−时程曲线

    Figure  8.  PT curves of different fragments at typical velocities

    图  9  两种高熵合金破片不同速度下压力峰值变化规律

    Figure  9.  The peak overpressures at different speeds of two high-entropy alloy fragments

    图  10  不同撞击速度下两种高熵合金破片单位质量的释能特性

    Figure  10.  The energy release characteristics per unit mass of two high-entropy alloy fragments at different impact velocities

    图  11  不同撞击速度下两种高熵合金破片单位质量的释能效率

    Figure  11.  The energy release efficiency per unit mass of two high-entropy alloy fragments under different impact velocities

    图  12  两种高熵合金破片在不同靶厚下的冲击反应试验现象

    Figure  12.  The experimental phenomenon of impacting of two high-entropy alloy fragments under the targets of different thickness

    图  13  FeNiMoW破片在不同靶厚下的超压峰值变化情况

    Figure  13.  The peak overpressures of FeNiMoW fragments under the targets of diferent thickness

    图  14  FeNiCoCr破片在不同靶厚下的超压峰值变化情况

    Figure  14.  The peak overpressures of FeNiCoCr fragments under the targets of diferent thickness

    图  15  FeNiMoW材料的毁伤特性

    Figure  15.  Damage characteristics of FeNiMoW

    图  16  FeNiCoCr材料的毁伤特性

    Figure  16.  Damage characteristics of FeNiCoCr

    图  17  高熵合金破片对多层铝板的毁伤示意图

    Figure  17.  Schematic diagram of damage of high-entropy alloy fragments to multi-layered aluminum plates

    图  18  FeNiMoW材料侵彻不同厚度钢靶后对多层铝板的毁伤效果

    Figure  18.  The damage of FeNiMoW on the multi-layered aluminum plate after penetrating the diferent thickness of steel-targets

    图  19  FeNiCoCr材料侵彻不同厚度钢靶后对多层铝板的毁伤效果

    Figure  19.  The damage of FeNiCoCr on the multi-layered aluminum plate after penetrating the diferent thickness steel-targets

    表  1  两种高熵合金破片不同撞击速度下超压峰值变化情况

    Table  1.   Different peak overpressures of two high-entropy alloy fragments at different impact velocities

    ShotsMaterialm/gv/(m·s−1)P/kPa
    1 FeNiMoW 3.40 771 0
    2 3.40 1356 5
    3 1.84 1482 7
    4 1.87 1501 4
    5 3.29 1535 15
    6 2.22 1692 14
    7 FeNiCoCr 1.88 953 0
    8 1.88 1217 3
    9 1.87 1610 6
    10 1.83 1707 8
    11 1.86 1725 59
    12 1.87 1804 42
    下载: 导出CSV

    表  2  FeNiMoW各组分的典型配比

    Table  2.   Typical proportions of FeNiMoW components

    FeNiMoW
    Wt/% 14.16 14.88 24.33 46.63
    n/% 25 25 25 25
    M/(g·mol−1) 55.85 58.69 95.95 183.86
    下载: 导出CSV

    表  3  FeNiCoCr各组分的典型配比

    Table  3.   Typical proportions of FeNiCoCr components

    FeNiCoCr
    Wt/% 24.77 26.03 26.14 23.06
    n/% 25 25 25 25
    M/(g·mol−1) 55.85 58.69 58.933 51.996
    下载: 导出CSV

    表  4  FeNiMoW侵彻不同厚度钢靶后对多层铝板的毁伤面积

    Table  4.   The damaged areas of FeNiMoW on the multi-layered aluminum plates after penetrating the diferent thickness of steel-targets

    Thickness of front
    steel target/mm
    Damaged areas of LY12 Al targets/mm2
    first layer
    front
    second layer
    front
    third layer
    front
    11445218090
    2 16468 0 0
    51520531690
    下载: 导出CSV

    表  5  FeNiCoCr侵彻不同厚度钢靶后对多层铝板的毁伤面积

    Table  5.   The damaged areas of FeNiCoCr on the multi-layered aluminum plates after penetrating the diferent thickness of steel-targets

    Thickness of front
    steel target/mm
    Damaged areas of LY12 Al targets/mm2
    first layer
    front
    second layer
    front
    third layer
    front
    1839432903413
    2 10557 2688 1618
    550355440
    下载: 导出CSV
  • [1] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化. 金属学报, 2018, 54(11): 1553-1566 (Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation behavior and toughening of high-entropy alloys. Acta Metallurgica Sinica, 2018, 54(11): 1553-1566 (in Chinese) doi: 10.11900/0412.1961.2018.00372
    [2] 张勇, 陈明彪, 杨潇. 先进高熵合金技术. 北京: 化学工业出版社, 2017

    (Zhang Yong, Chen Mingbiao, Yang Xiao. Advanced High-entropy Alloy Technology. Beijing: Chemical Industry Press, 2017 (in Chinese))
    [3] Miracle DB, Senkov ON. A critical review of high-entropy alloys and related concepts. Acta Materialia, 2017, 122: 448-511 doi: 10.1016/j.actamat.2016.08.081
    [4] Chou HP, Chang YS, Chen SK, et al. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Materials Science and Engineering:B, 2009, 163(3): 184-189 doi: 10.1016/j.mseb.2009.05.024
    [5] Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia, 2013, 61(13): 4887-4897 doi: 10.1016/j.actamat.2013.04.058
    [6] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153-1158 doi: 10.1126/science.1254581
    [7] 杨铭, 刘雄军, 吴渊等. 高熵非晶合金研究进展. 中国科学:物理学 力学 天文学, 2020, 50(6): 21-33 (Yang Ming, Liu Xiongjun, Wu Yuan, et al. Research progress on high-entropy bulk metallic glasses. Sci Sin-Phys Mech Astron, 2020, 50(6): 21-33 (in Chinese)
    [8] 温晓灿, 张凡, 雷智锋等. 高熵合金中的第二相强韧化. 中国材料进展, 2019, 38(03): 242-250 (Wen Xiaocan, Zhang Fan, Lei Zhifeng, et al. Second phase strengthening in high-entropy alloys. Materials China, 2019, 38(03): 242-250 (in Chinese)
    [9] Zhang WR, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Science China Materials, 2018, 61(1): 2-22
    [10] 张勇, 周云军, 惠希东等. 大块金属玻璃及高熵合金的合金化作用. 中国科学(G 辑:物理学 力学 天文学), 2008(4): 439-448 (Zhang Yong, Zhou Yunjun, Hui Xidong, et al. Alloying effect of bulk metallic glass and high-entropy alloy. Sci Sin-Phys Mech Astron, 2008(4): 439-448 (in Chinese)
    [11] 李建国, 黄瑞瑞, 张倩等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020, 52(2): 333-359 (Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechnical properties and behaviors of high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359 (in Chinese)
    [12] Zhang Z, Hong Z, Yu T, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53. Materials & Design, 2017, 133: 435-443
    [13] 张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究. [硕士论文]. 长沙: 国防科技大学, 2017

    (Zhang Zhouran. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials. [Master's Thesis]. Changsha: National University of Defense Technology, 2017 (in Chinese))
    [14] 王睿鑫. NbZrTiTa高熵合金的组织结构演变及结构释能特性研究. [硕士论文]. 长沙: 国防科技大学, 2018

    (Wang Ruixin. Microstructure evolution and energetic structural properties of NbZrTiTa high-entropy alloy. [Master's Thesis]. Changsha: National University of Defense Technology, 2018 (in Chinese))
    [15] 李甲, 冯慧, 陈阳等. 高熵合金强韧化理论建模与模拟研究进展. 固体力学学报, 2020, 41(2): 93-108 (Li Jia, Feng Hui, Chen Yang, et al. Progress in theoretical modeling and simulation on strengthening and toughening of high-entropy alloys. Chinese Journal of Solid Mechanics, 2020, 41(2): 93-108 (in Chinese)
    [16] Chu C, Chen W, Chen Z, et al. Microstructure and mechanical behavior of FeNiCoCr and FeNiCoCrMn high-entropy alloys fabricated by powder metallurgy. Acta Metallurgica Sinica (English Letters) , 2021, 34(4): 445-454 doi: 10.1007/s40195-020-01150-9
    [17] Xu J, Kong X, Chen M, et al. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation. Journal of Materials Science & Technology, 2021, 82: 207-213
    [18] Wu P, Gan K, Yan D, et al. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corrosion Science, 2021, 183: 109341 doi: 10.1016/j.corsci.2021.109341
    [19] Lin WT, Chen D, Dang CQ, et al. Highly pressurized helium nanobubbles promote stacking-fault-mediated deformation in FeNiCoCr high-entropy alloy. Acta Materialia, 2021, 210: 116843 doi: 10.1016/j.actamat.2021.116843
    [20] Zhang TW, Ma SG, Zhao D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling. International Journal of Plasticity, 2020, 124: 226-246 doi: 10.1016/j.ijplas.2019.08.013
    [21] 陈海华, 张先锋, 熊玮等. WFeNiMo高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020, 52(5): 1443-1453 (Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453 (in Chinese)
    [22] Liu XF, Tian ZL, Zhang XF, et al. “Self-sharpening” tungsten high entropy alloy. Acta Materialia, 2020, 186: 257-266 doi: 10.1016/j.actamat.2020.01.005
    [23] 熊玮, 张先锋, 陈亚旭等. 冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究. 爆炸与冲击, 2019, 39(5): 130-138 (Xiong Wei, Zhang Xianfeng, Chen Yaxu, et al. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites. Explosion And Shock Waves, 2019, 39(5): 130-138 (in Chinese)
    [24] 宋鸿武, 陈岩, 程明等. 异种金属层状复合材料累积叠轧工艺的研究进展. 材料导报, 2011, 25(19): 7-12 (Song Hongwu, Chen Yan, Cheng Ming, et al. Progresses in the accumulative roll-bonding of clad bimetals. Materials Review, 2011, 25(19): 7-12 (in Chinese)
    [25] Lynch DD, Kunkel RW, Juarascio SS. An analysis comparison using the vulnerability analysis for surface targets (VAST) computer code and the computation of vulnerable area and repair Time (COVART III) computer code: ARL-MR-341. USA: Army Research Laboratory, 1997
    [26] Ames RG. Vented chamber calorimetry for impact-initiated energetic materials//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005
    [27] Ames RG. Energy release characteristics of impact-initiated energetic materials//MRS Online Proceedings Library (OPL), 2005: 896
    [28] Ames RG, Waggener SS. Reaction efficiencies for impact-initiated energetic materials//Proceedings of the 32nd International Pyrotechnics Seminar, Karlsruhe, Germany. 2005: 28
    [29] Fischer S, Grubelich M. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications//32nd Joint Propulsion Conference and Exhibit. 1996: 3018
    [30] Wang CT, He Y, Ji C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass. Intermetallics, 2018, 93: 383-388 doi: 10.1016/j.intermet.2017.11.004
    [31] 陈曦, 杜成鑫, 程春等. Zr基非晶合金材料的冲击释能特性. 兵器材料科学与工程, 2018, 41(6): 44-49 (Chen Xi, Du Chengxin, Cheng Chun, et al. Impact energy releasing characteristics of Zr-based amorphous alloy. Ordnance Material Science and Engineering, 2018, 41(6): 44-49 (in Chinese)
    [32] Zhang YF, Luo XB, Liu GQ, et al. Shock-induced reaction characteristics of porous W/Zr-based metallic glass composite fragments. Rare Metal Materials and Engineering, 2020, 49(8): 2549-2556
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  121
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 录用日期:  2021-08-18
  • 网络出版日期:  2021-08-19
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回