EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微磁检测应力和塑性区的磁弹塑耦合理论

时朋朋

时朋朋. 微磁检测应力和塑性区的磁弹塑耦合理论. 力学学报, 2021, 53(12): 1-13 doi: 10.6052/0459-1879-21-325
引用本文: 时朋朋. 微磁检测应力和塑性区的磁弹塑耦合理论. 力学学报, 2021, 53(12): 1-13 doi: 10.6052/0459-1879-21-325
Shi Pengpeng. Theoretical model of magneto-elastoplastic coupling for micro-magnetic non-destructive testing method with stress concentration and plastic zone. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 1-13 doi: 10.6052/0459-1879-21-325
Citation: Shi Pengpeng. Theoretical model of magneto-elastoplastic coupling for micro-magnetic non-destructive testing method with stress concentration and plastic zone. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 1-13 doi: 10.6052/0459-1879-21-325

微磁检测应力和塑性区的磁弹塑耦合理论

doi: 10.6052/0459-1879-21-325
基金项目: 国家自然科学基金(11802225), 陕西省自然科学基础研究计划(2019 JQ-261)资助项目
详细信息
    作者简介:

    时朋朋, 教授, 主要研究方向: 铁磁材料力磁本构及磁无损检测技术. E-mail: shipengpeng@xjtu.edu.cn

  • 中图分类号: O39

THEORETICAL MODEL OF MAGNETO-ELASTOPLASTIC COUPLING FOR MICRO-MAGNETIC NON-DESTRUCTIVE TESTING METHOD WITH STRESS CONCENTRATION AND PLASTIC ZONE

  • 摘要: 金属磁记忆微磁检测方法, 利用铁磁材料局部磁性状态的变化, 进行应力集中或塑性区域位置及程度的检测与评价. 面向微磁信号的定量理论分析可对其工程领域应用提供重要指导. 本文介绍铁磁材料微弱环境磁场下的磁弹塑性本构进展, 及其在微磁信号分析方面的应用. 力磁本构关系方面, 针对微磁检测弱磁化条件, 基于有效场理论构建了受弹塑性载荷铁磁材料的理想磁化本构的显式解析式, 并结合接近原理分析了恒定外加微弱磁场下应力-应变对材料磁化强度的影响. 检测信号分析方面, 基于弹性力学理论、静磁学理论和新建立的磁弹塑性本构关系, 建立并求解了微弱磁场下铁磁试件中弹性应力或塑性区诱导的表面磁信号的二维分析模型. 结合实验结果证实其在刻画弹塑性因素对微磁信号影响规律方面的能力, 并详细分析了微磁信号的特征量与局部弹性应力或塑性区的尺寸间的相关关系. 相比已有力磁本构关系, 本文建立的显式解析形式的理想磁化更加简洁, 有助于提升对力磁耦合效应的定量化理解和应用.

     

  • 图  1  弹性应力或塑性区诱导微磁信号及其信号特征量的示意图

    Figure  1.  Schematic diagram of the micro-magnetic signal induced by elastic stress or plastic zone and its signal characteristics

    图  2  磁信号分析的程序验证(点: 文献[31]结果, 线: 本文结果)

    Figure  2.  Verification of magnetic signal analysis (points: result in Ref. [31], lines: present result)

    图  3  不同弹性应力和塑性变形下试件表面微磁信号的理论预测与实验[32-33]结果的对比

    Figure  3.  Comparison of theoretical predictions and experimental results[32-33] of micro-magnetic signals on the surface of specimens under different elastic stress loading and plastic deformation

    图  4  理想磁化的解析解和数值解之间的比较

    Figure  4.  Comparison between analytical and numerical solutions of ideal magnetization

    图  5  不同环境磁场和塑性变形下的应力磁化

    Figure  5.  Stress magnetization curve under different environmental magnetic fields and plastic deformation

    6  应力集中区长度和深度对磁信号的影响

    6.  The influence of the length and depth of the stress concentration zone on the magnetic signal

    图  6  应力集中区长度和深度对磁信号的影响(续)

    Figure  6.  The influence of the length and depth of the stress concentration zone on the magnetic signal (continued)

    图  7  塑性区长度和深度对磁信号的影响

    Figure  7.  The influence of the length and depth of the plastic zone on the magnetic signal

    图  8  特征量的影响规律

    Figure  8.  The influence law of characteristic quantity

    图  9  不同应力或塑性水平对微磁信号的影响规律

    Figure  9.  The influence law of different stress or plastic deformation value on micro-magnetic signal

    图  10  不同应力或塑性水平对磁化强度的影响规律

    Figure  10.  The influence of different stress value and plasticity deformation on magnetization

    表  1  理论模型参数值[14]

    Table  1.   The parameter value of the theoretical model

    物理量含义单位数值物理量含义单位数值
    $ E $弹性模量GPa210$ {M_s} $饱和磁化强度A/m1.7 × 106
    $ {\sigma _s} $屈服强度MPa250$ {\lambda _s} $饱和磁致伸缩应变14.17 × 10−6
    $ \beta $磁化随应力的变化速率13.7$ {M_{{\rm{ws}}}} $饱和壁移磁化强度A/m0.95 × 106
    $ a $初始磁导率相关的磁化参数A/m280$ k $磁致伸缩下降段的无量纲比值10.7
    $ k' $钉扎系数10.001$ c $磁畴壁的柔性系数10.08
    $ {N_d} $退磁因子11 × 10−5$ \xi ' $与能量相关的系数11 × 106
    $ \eta $应力不可逆磁化的修正参数10.1$ n $钉扎密度与塑性变形的指数律10.8
    下载: 导出CSV

    表  2  应力磁化曲线预测中的参数取值[30]

    Table  2.   Parameter value in stress magnetization curve prediction[30]

    H/(A·m−1)β /1a/(A·m−1)$ \eta $/1$ \xi ' $(1)
    803.52850.11.5 × 106
    1324.43000.23 × 106
    下载: 导出CSV
  • [1] Dubov AA. A study of metal properties using the method of magnetic memory. Metal Science and Heat Treatment, 1997, 39(9): 401-405 doi: 10.1007/BF02469065
    [2] 林俊明, 林春景, 林发炳等. 基于磁记忆效应的一种无损检测新技术. 无损检测, 2000, 22(7): 9-11 (Lin Junming, Lin Chunjing, Lin Fabing, et al. A new nondestructive testing technology based on magnetic memory effect. NDT, 2000, 22(7): 9-11 (in Chinese)
    [3] Shi PP, Su SQ, Chen ZM. Overview of researches on the nondestructive testing method of metal magnetic memory. Journal of Nondestructive Evaluation, 2020, 39: 1-37 doi: 10.1007/s10921-019-0643-0
    [4] Wu LB, Yao K, Shi PP, et al. Influence of inhomogeneous stress on biaxial 3 D magnetic flux leakage signals. NDT & E International, 2020, 108: 102178
    [5] 徐滨士, 董世运, 门平等. 激光增材制造成形合金钢件质量特征及其检测评价技术现状(特邀). 红外与激光工程, 2018, 47(4): 8-16 (Xu Binshi, Dong Shiyun, Men Ping, et al. Quality characteristics and nondestructive test and evaluation technology for laser additive manufacturing alloy steel components (invited). Infrared and Laser Engineering, 2018, 47(4): 8-16 (in Chinese)
    [6] 陈金忠, 沈功田, 郑阳等. 材料损伤电磁无损检测与评估新技术研究. 中国特种设备安全, 2018, 34(2): 1-4 (Chen Jinzhong, Shen Gongtian, Zheng Yang, et al. Research on the new technologies of electromagnetic non-destructive testing and evaluation for materials damage. China's Special Equipment safety, 2018, 34(2): 1-4 (in Chinese) doi: 10.3969/j.issn.1673-257X.2018.02.001
    [7] 吴斌, 王学迁, 刘秀成等. 基于微磁检测技术的钢杆淬硬层深度定量预测. 北京工业大学学报, 2018, 044(5): 687-692

    Wu Bin, Wang Xueqian, Liu Xiucheng, et al. Quantitative prediction of induction hardened case depth in steel rods based on micro-magnetic testing technique. Journal of Beijing University of Technology. 2018, 044(5): 687-692 (in Chinese)
    [8] 王志, 何存富, 刘秀成等. 应力和组分占比对马氏体−铁素体双相钢中磁巴克豪森噪声的影响. 实验力学, 2021, 36(1): 43-50

    Wang Zhi, He Cunfu, Liu Xiuchen, et al. Effect of applied stress and phase proportion on the magnetic backhouse noise in martensite-ferrite stee, Journal of Experimental Mechanics, 2021, 36(1): 43-50 (in Chinese)
    [9] 章鹏, 刘琳, 陈伟民. 磁性应力监测中力磁耦合特征及关键影响因素分析. 物理学报, 2013, 62(17): 177501

    Zhang Peng, Liu Lin, Chen Weimin. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring. Acta Physica Sinica. 2013, 62(17): 177501 (in Chinese)
    [10] Jiles DC. Theory of the magnetomechanical effect. Journal of Physics D Applied Physics, 1995, 28(8): 1537-1546 doi: 10.1088/0022-3727/28/8/001
    [11] Jiles DC, Li L. A new approach to modeling the magnetomechanical effect. Journal of Applied Physics, 2004, 95(11): 7058-7060 doi: 10.1063/1.1687200
    [12] Li JW, Xu MQ. Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress. Journal of Applied Physics, 2011, 110(6): 8
    [13] Craik DJ, Wood MJ. Magnetization changes induced by stress in a constant applied field. Journal of Physics D Applied Physics, 1970, 3(7): 1009 doi: 10.1088/0022-3727/3/7/303
    [14] Shi PP, Jin K, Zheng XJ. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field. Journal of Applied Physics, 2016, 119(14): 145103 doi: 10.1063/1.4945766
    [15] Wang ZD, Deng B, Yao K. Physical model of plastic deformation on magnetization in ferromagnetic materials. Journal of Applied Physics, 2011, 109(8): 083928 doi: 10.1063/1.3574923
    [16] Li JW, Xu MQ, Leng JC, et al. Modeling plastic deformation effect on magnetization in ferromagnetic materials. Journal of Applied Physics, 2012, 111(6): 063909 doi: 10.1063/1.3695460
    [17] Shi PP. Magneto-elastoplastic coupling model of ferromagnetic material with plastic deformation under applied stress and magnetic fields. Journal of Magnetism and Magnetic Materials, 2020, 512: 166980 doi: 10.1016/j.jmmm.2020.166980
    [18] Wang ZD, Yao K, Deng B, et al. Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT & E International, 2010, 43(4): 354-359
    [19] Wang ZD, Yao K, Deng B, et al. Quantitative study of metal magnetic memory signal versus local stress concentration. NDT & E International, 2010, 43(6): 513-518
    [20] 姚凯, 王正道, 邓博等. 金属磁记忆技术的数值研究. 工程力学, 2011, 28(9): 218-222 (Yao Kai, Wang Zhengdao, Deng Bo, et al. Numerical study on metal magnetic memory technique. Engineering Mechanics, 2011, 28(9): 218-222 (in Chinese)
    [21] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解. 物理学报, 2021, 70(3): 034101 (Shi Pengpeng, Hao Shuai. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Physica Sinica, 2021, 70(3): 034101 (in Chinese) doi: 10.7498/aps.70.20200937
    [22] Shi PP, Bai PG, Chen HE, et al. The magneto-elastoplastic coupling effect on the magnetic flux leakage signal. Journal of Magnetism and Magnetic Materials, 2020, 504: 166669 doi: 10.1016/j.jmmm.2020.166669
    [23] Shi PP, Jin K, Zheng XJ. A magnetomechanical model for the magnetic memory method. International Journal of Mechanical Sciences, 2017, 124: 229-241
    [24] Zhong LQ, Li LM, Chen X. Simulation of magnetic field abnormalities caused by stress concentrations. IEEE Transactions on Magnetics, 2013, 49(3): 1128-1134 doi: 10.1109/TMAG.2012.2216539
    [25] Shi PP, Jin K, Zhang PC, et al. Quantitative inversion of stress and crack in ferromagnetic materials based on metal magnetic memory method. IEEE Transactions on Magnetics, 2018, 54(10): 1-11
    [26] Zhang PC, Shi PP, Jin K, et al. An anisotropic magneto-mechanical model of ferromagnetic materials for the magnetic memory testing method. Journal of Applied Physics, 2019, 125(23): 233901 doi: 10.1063/1.5094840
    [27] Shi PP, Zhang PC, Jin K, et al. Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials. Journal of Applied Physics, 2018, 123(14): 145102 doi: 10.1063/1.5022534
    [28] Zhang PC, Jin K, Zheng XJ. Magneto-mechanical coupling model of ferromagnetic materials under fatigue loading and its application in metal magnetic memory method. Journal of Magnetism and Magnetic Materials, 2020, 514: 167167 doi: 10.1016/j.jmmm.2020.167167
    [29] Kuruzar ME, Cullity BD. The magnetostriction of iron under tensile and compressive stress. International Journal of Magnetism, 1971, 1(4): 323-325
    [30] Shi PP. Magneto-mechanical model of ferromagnetic material under a constant weak magnetic field via analytical anhysteresis solution. Journal of Applied Physics, 2020, 128(11): 115102 doi: 10.1063/5.0012580
    [31] Yao K, Deng B, Wang ZD. Numerical studies to signal characteristics with the metal magnetic memory-effect in plastically deformed samples. NDT & E International, 2012, 47: 7-17
    [32] Shi CL, Dong SY, Xu BS, et al. Metal magnetic memory effect caused by static tension load in a case-hardened steel. Journal of Magnetism and Magnetic Materials, 2010, 322(4): 413-416 doi: 10.1016/j.jmmm.2009.09.066
    [33] Li JW, Xu MQ. Influence of uniaxial plastic deformation on surface magnetic field in steel. Meccanica, 2012, 47(1): 135-139 doi: 10.1007/s11012-011-9424-2
    [34] Guo PJ, Chen XD, Guan WH, et al. Effect of tensile stress on the variation of magnetic field of low-alloy steel. Journal of Magnetism and Magnetic Materials, 2011, 323(20): 2474-2477 doi: 10.1016/j.jmmm.2011.05.015
    [35] Leng JC, Xu MQ, Zhou GQ, et al. Effect of initial remanent states on the variation of magnetic memory signals. NDT & E International, 2012, 52: 23-27
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  17
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-04
  • 录用日期:  2021-11-04
  • 网络出版日期:  2021-11-05

目录

    /

    返回文章
    返回