EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的颗粒移动床μ(I)拟流体模型及应用

吴坤 刘向军 戴椰凌

吴坤, 刘向军, 戴椰凌. 一种改进的颗粒移动床μ(I)拟流体模型及应用. 力学学报, 2021, 53(10): 2752-2761 doi: 10.6052/0459-1879-21-320
引用本文: 吴坤, 刘向军, 戴椰凌. 一种改进的颗粒移动床μ(I)拟流体模型及应用. 力学学报, 2021, 53(10): 2752-2761 doi: 10.6052/0459-1879-21-320
Wu Kun, Liu Xiangjun, Dai Yeling. An improved μ(I) rheology model for dense granular flow in moving beds and its applications. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2752-2761 doi: 10.6052/0459-1879-21-320
Citation: Wu Kun, Liu Xiangjun, Dai Yeling. An improved μ(I) rheology model for dense granular flow in moving beds and its applications. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2752-2761 doi: 10.6052/0459-1879-21-320

一种改进的颗粒移动床μ(I)拟流体模型及应用

doi: 10.6052/0459-1879-21-320
基金项目: 国家重点研发计划资助项目(2017YFB0603502)
详细信息
    作者简介:

    刘向军, 教授, 主要研究方向: 复杂多相流动模型与模拟研究. E-mail: liuxj@me.ustb.edu.cn

  • 中图分类号: O359

AN IMPROVED μ(I) RHEOLOGY MODEL FOR DENSE GRANULAR FLOW IN MOVING BEDS AND ITS APPLICATIONS

  • 摘要: 颗粒移动床在工业领域应用广泛, 发展实用可靠的颗粒移动床模型具有理论和应用价值. 本文基于颗粒流μ(I)模型, 补充局部颗粒体积分数与颗粒局部压力和局部颗粒流密度的关系式, 将移动床内密集颗粒处理成可压缩拟流体, 建立了颗粒流单相可压缩流μ(I)模型, 并建立了颗粒流−壁面摩擦条件, 在计算中对颗粒流拟黏度和拟压力项进行正则化处理. 采用上述模型与方法对3种典型散料在移动床缩口料仓内的流动进行模拟, 与实验对比, 得到了玻璃珠、刚玉球和粗沙的μ(I)模型参数, 分析了3种不同散料在料仓内的颗粒速度、体积分数等分布特性, 模拟结果较好地揭示了料仓内不同物料的整体流和漏斗流特性; 进而以玻璃珠为例, 对移动床颗粒单管绕流流动进行了模拟, 所得结果合理揭示了管流附近的流动特性. 计算结果表明, 对于本文的计算工况, 颗粒体积分数变化最大范围为0.510 ~ 0.461, 绝大部分区域流动惯性数小于0.1, 改进的单相μ(I)模型能合理预测出密集颗粒流移动床内的流动特性, 方法可行且较多相流算法能明显减小计算量.

     

  • 图  1  料仓模型

    Figure  1.  Sketch of the silo

    图  2  不同散料的的速度分布

    Figure  2.  Velocity distribution of different granular materials

    图  3  速度实验值与模拟的对比

    Figure  3.  Velocity comparison between the experiment and simulation

    图  4  不同散料的速度应变率分布

    Figure  4.  Strain rate distribution of different granular materials

    图  5  不同散料的惯性数分布 (0 ~ 0.001)

    Figure  5.  Inertial number distribution of different granular materials (0 ~ 0.001)

    图  6  玻璃珠惯性数分布(0 ~ 0.1)

    Figure  6.  Inertial number distribution of glass beads (0 ~ 0.1)

    图  7  不同散料的体积分数分布

    Figure  7.  Volume fraction distribution of different granular materials

    图  8  颗粒绕流流动模型

    Figure  8.  Sketch of granular flow around a pipe

    图  9  颗粒流绕管速度分布

    Figure  9.  Velocity distribution of granular flow around a pipe

    图  10  颗粒流绕管固相拟压力分布

    Figure  10.  Particle pressure distribution of granular flow around a pipe

    图  11  颗粒流绕管颗粒体积分数分布

    Figure  11.  Particle volume fraction distribution of granular flow around a pipe

    图  12  颗粒流绕管速度应变率分布

    Figure  12.  Strain rate distribution of granular flow around a pipe

    图  13  颗粒流绕管惯性数分布

    Figure  13.  Inertia number distribution of granular flow around a pipe

    表  1  模拟参数

    Table  1.   Simulation parameters

    Glass beadsCorundum beadsCoarse sand
    μs 0.32 0.37 0.42
    μ2 0.64 0.7 0.88
    μw,s 0.22 0.27 0.37
    μw,2 0.26 0.30 0.40
    I0 0.279 0.279 0.279
    I0,w 0.279 0.279 0.279
    αs,max 0.55 0.55 0.55
    αs,min 0.45 0.45 0.45
    ρs/(kg·m−3) 2600 1800 2650
    d/mm 3 2 1
    下载: 导出CSV
  • [1] 孔全磊, 刘军祥, 于庆波等. 移动床内气化反应特性的模拟. 材料与冶金学报, 2021, 20(2): 92-96 (Kong Quanlei, Liu Junxiang, Yu Qingbo, et al. Simulation of gasification reaction characteristics in moving bed. Journal of Materials and Metallurgy, 2021, 20(2): 92-96 (in Chinese)
    [2] 尹少武, 薛飞扬, 王旭等. 埋管颗粒床烟气净化与余热回收特性实验研究. 工程热物理学报, 2019, 40(8): 1928-1935 (Yin Shaowu, Xue Feiyang, Wang Xu, et al. Experimental study on characteristics of flue gas purification and waste heat recovery in granular bed. Journal of Engineering Thermophysics, 2019, 40(8): 1928-1935 (in Chinese)
    [3] 邱琳, 李艳丽, 冯妍卉等. 多粒径高炉渣在移动床内余热回收的数值模拟. 工程热物理学报, 2019, 40(10): 2047-2414 (Qiu Lin, Li Yanli, Feng Yanhui, et al. Numerical simulation of waste heat recovery of multi grain blast furnace slag in moving bed. Journal of Engineering Thermophysics, 2019, 40(10): 2047-2414 (in Chinese)
    [4] Jiang BF, Xia DH, Zhang HL, et al. Effective waste heat recovery from industrial high-temperature granules: A moving bed indirect heat exchanger with embedded agitation. Energy, 2020, 208: 118346 doi: 10.1016/j.energy.2020.118346
    [5] Cundall PA, Strack O. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47-65
    [6] Anand A, Curtis JS, Wassgren CR, et al. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science, 2008, 63(24): 5821-5830 doi: 10.1016/j.ces.2008.08.015
    [7] Gui N, Yang XY, Tu JY, et al. Effects of rocking frequency and amplitude on particle discharge in rocking bed: A DEM study. Powder Technology, 2016, 292: 31-45 doi: 10.1016/j.powtec.2016.01.015
    [8] Höhner D, Wirtz S, Scherer V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technology, 2013, 235: 614-627 doi: 10.1016/j.powtec.2012.11.004
    [9] Acevedo M, Zuriguel I, Maza D, et al. Stress transmission in systems of faceted particles in a silo: the roles of filling rate and particle aspect ratio. Granular Matter, 2014, 16(4): 411-420 doi: 10.1007/s10035-014-0509-1
    [10] Chen YY, Liang C, Wang X, et al. Static pressure distribution characteristics of powders stored in silos. Chemical Engineering Research and Design, 2020, 154: 1-10 doi: 10.1016/j.cherd.2019.10.050
    [11] Deng SN, Wen Z, Lou GF, et al. Process of particles flow across staggered tubes in moving bed. Chemical Engineering Science, 2020, 217: 115507 doi: 10.1016/j.ces.2020.115507
    [12] Roux JN. Quasistatic rheology and the origins of strain. Comptes Rendus Physique, 2002, 3(2): 131-140 doi: 10.1016/S1631-0705(02)01306-3
    [13] Campbell CS. Rapid granular flows. Annual Review of Fluid Mechanics, 1990, 22(1): 57-92 doi: 10.1146/annurev.fl.22.010190.000421
    [14] MiDi GDR. On dense granular flows. European Physical Journal E Soft Matter, 2004, 14(4): 341-365 doi: 10.1140/epje/i2003-10153-0
    [15] Pouliquen O, Chevoir F. Dense flows of dry granular material. Comptes Rendus Physique, 2002, 3(2): 163-175 doi: 10.1016/S1631-0705(02)01309-9
    [16] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory description. Journal of Non-Newtonian Fluid Mechanics, 1994, 55(2): 207-208 doi: 10.1016/0377-0257(94)80007-3
    [17] Johnson PC, Jackson R. Frictional collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics, 1987, 176: 67-93 doi: 10.1017/S0022112087000570
    [18] Berzi D. Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mechanica, 2014, 225(8): 2191-2198 doi: 10.1007/s00707-014-1125-1
    [19] Schaeffer DG. Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations, 1987, 66(1): 19-50 doi: 10.1016/0022-0396(87)90038-6
    [20] Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology, 2003, 129: 72-85 doi: 10.1016/S0032-5910(02)00132-8
    [21] Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature, 2006, 441(7094): 727-730 doi: 10.1038/nature04801
    [22] Tian T, Su JL, Zhan JH, et al. Discrete and continuum modeling of granular flow in silo discharge. Particuology, 2018, 36: 127-138 doi: 10.1016/j.partic.2017.04.001
    [23] Bouchut F, Fernández-Nieto ED, Koné EH, et al. Dilatancy in dry granular flows with a compressible μ(I) rheology. Journal of Computational Physics, 2020, 429: 110013
    [24] Fei JB, Jie YX, Sun XB, et al. Experimental investigation on granular flow past baffle piles and numerical simulation using a μ(I) -rheology-based approach. Powder Technology, 2020, 359: 36-46 doi: 10.1016/j.powtec.2019.09.069
    [25] 孙倩, 彭天骥, 严安等. 密集颗粒流动的连续性方法应用研究. 原子能科学技术, 2020, 359(12): 36-46 (Sun Qian, Peng Tianji, Yan an, et al. Application of continuity method in dense particle flow. Atomic Energy Science and Technology, 2020, 359(12): 36-46 (in Chinese)
    [26] Chauchat J, Medale M. A three-dimensional numerical model for dense granular flows based on the μ(I) rheology. Journal of Computational Physics, 2014, 256: 696-712 doi: 10.1016/j.jcp.2013.09.004
    [27] Bartsch P, Baumann T, Zunft S. Granular flow field in moving bed heat exchangers: a continuous model approach. Energy Procedia, 2016, 99: 72-79 doi: 10.1016/j.egypro.2016.10.099
    [28] Baumann T, Zunft S, Tamme R, et al. Moving bed heat exchangers for use with heat storage in concentrating solar plants: A multiphase model. Heat Transfer Engineering, 2014, 35(3): 224-231 doi: 10.1080/01457632.2013.825154
    [29] Schneiderbauer S, Aigner A, Pirker S. A comprehensive frictional-kinetic model for gas–particle flows: Analysis of fluidized and moving bed regimes. Chemical Engineering Science, 2012, 80: 279-292 doi: 10.1016/j.ces.2012.06.041
    [30] Staron L, Lagrée PY, Popinet S. Continuum simulation of the discharge of the granular silo: a validation test for the μ(I) visco-plastic flow law. European Physical Journal E, 2014, 37(1): 1-12 doi: 10.1140/epje/i2014-14001-x
    [31] Jop P. Rheological properties of dense granular flows. Comptes Rendus Physique, 2015, 16(1): 62-72 doi: 10.1016/j.crhy.2014.12.001
    [32] Lin CC, Yang FL. Continuum simulation for regularized non-local μ(I) model of dense granular flows. Journal of Computational Physics, 2020, 420: 109728
    [33] Valette R, Riber S, Sardo L, et al. Sensitivity to the rheology and geometry of granular collapses by using the μ(I) rheology. Computers & Fluids, 2019, 191: 104260
    [34] Gesenhues L, Camata J, Côrte A, et al. Finite element simulation of complex dense granular flows using a well-posed regularization of the μ(I) rheology. Computers & Fluids, 2019, 188: 102-133
    [35] Heyman J, Delannay R, Tabuteau H, et al. Compressibility regularizes the μ(I) rheology for granular flows. Journal of Fluid Mechanics, 2017, 830: 553-568 doi: 10.1017/jfm.2017.612
    [36] Dai YL, Liu XJ, Xia DH. Flow characteristics of three typical granular materials in near 2D moving beds. Powder Technology, 2020, 373: 220-231 doi: 10.1016/j.powtec.2020.06.057
    [37] Fickie KE, Mehrabi R, Jackson R. Density variations in a granular material flowing from a wedge-shaped hopper. AIChE Journal, 1989, 35(5): 853-855 doi: 10.1002/aic.690350517
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  197
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 录用日期:  2021-08-19
  • 网络出版日期:  2021-08-20
  • 刊出日期:  2021-10-26

目录

    /

    返回文章
    返回