AN IMPROVED μ(I) RHEOLOGY MODEL FOR DENSE GRANULAR FLOW IN MOVING BEDS AND ITS APPLICATIONS
-
摘要: 颗粒移动床在工业领域应用广泛, 发展实用可靠的颗粒移动床模型具有理论和应用价值. 本文基于颗粒流μ(I)模型, 补充局部颗粒体积分数与颗粒局部压力和局部颗粒流密度的关系式, 将移动床内密集颗粒处理成可压缩拟流体, 建立了颗粒流单相可压缩流μ(I)模型, 并建立了颗粒流−壁面摩擦条件, 在计算中对颗粒流拟黏度和拟压力项进行正则化处理. 采用上述模型与方法对3种典型散料在移动床缩口料仓内的流动进行模拟, 与实验对比, 得到了玻璃珠、刚玉球和粗沙的μ(I)模型参数, 分析了3种不同散料在料仓内的颗粒速度、体积分数等分布特性, 模拟结果较好地揭示了料仓内不同物料的整体流和漏斗流特性; 进而以玻璃珠为例, 对移动床颗粒单管绕流流动进行了模拟, 所得结果合理揭示了管流附近的流动特性. 计算结果表明, 对于本文的计算工况, 颗粒体积分数变化最大范围为0.510 ~ 0.461, 绝大部分区域流动惯性数小于0.1, 改进的单相μ(I)模型能合理预测出密集颗粒流移动床内的流动特性, 方法可行且较多相流算法能明显减小计算量.Abstract: Moving bed technology of dense granular flow has been widely applied in industrial processes. A practical simulation method and detailed studies on the characteristics of granular flow in moving bed are of great significance for its design and operation. In this paper, an improved μ(I) rheology model for dense granular flow in moving beds is presented. Specifically, the relationship among local particle volume fraction, local granular pressure and granular flow density, is proposed, based on which the governing equations by treating the dense granular flow as a compressible pseudo-fluid are established. The particle-wall shear slip boundary condition, together with the regularisation method in the calculation of pseudo-fluid viscosity and granular pressure are presented as well. Firstly, the proposed model is validated and the rheological parameters involved in μ(I) model are determined by the experimental results of velocity distributions for 3 kinds of typical granular materials, namely, glass beads, corundum beads, and coarse sand in a silo. Detailed results regarding the particle velocity, solid volume fraction, velocity shear rate and inertial number of the 3 different granular flow in the silo are obtained. The two typical different flow modes, i.e. the funnel flow for coarse sand and the mass flow for glass beads in silos, are well predicted. Secondly, the granular flow of glass beads passing through a moving bed with an inbuilt pipe is studied as well. Reasonable results including particle velocity, solid volume fraction and granular pressure around the pipe are revealed and analyzed. The typical solid volume fraction of the studied cases ranges from 0.510 ~ 0.461, and the inertial numbers in most region of the beds are less than 0.1. The simulated results show that the proposed model is feasible for dense granular flow in moving beds and the calculation amount is significantly reduced compared with that of the multi-phase simulation method.
-
Key words:
- moving bed /
- μ(I) rheology model /
- granular flow /
- particle volume fraction /
- granular pressure
-
表 1 模拟参数
Table 1. Simulation parameters
Glass beads Corundum beads Coarse sand μs 0.32 0.37 0.42 μ2 0.64 0.7 0.88 μw,s 0.22 0.27 0.37 μw,2 0.26 0.30 0.40 I0 0.279 0.279 0.279 I0,w 0.279 0.279 0.279 αs,max 0.55 0.55 0.55 αs,min 0.45 0.45 0.45 ρs/(kg·m−3) 2600 1800 2650 d/mm 3 2 1 -
[1] 孔全磊, 刘军祥, 于庆波等. 移动床内气化反应特性的模拟. 材料与冶金学报, 2021, 20(2): 92-96 (Kong Quanlei, Liu Junxiang, Yu Qingbo, et al. Simulation of gasification reaction characteristics in moving bed. Journal of Materials and Metallurgy, 2021, 20(2): 92-96 (in Chinese) [2] 尹少武, 薛飞扬, 王旭等. 埋管颗粒床烟气净化与余热回收特性实验研究. 工程热物理学报, 2019, 40(8): 1928-1935 (Yin Shaowu, Xue Feiyang, Wang Xu, et al. Experimental study on characteristics of flue gas purification and waste heat recovery in granular bed. Journal of Engineering Thermophysics, 2019, 40(8): 1928-1935 (in Chinese) [3] 邱琳, 李艳丽, 冯妍卉等. 多粒径高炉渣在移动床内余热回收的数值模拟. 工程热物理学报, 2019, 40(10): 2047-2414 (Qiu Lin, Li Yanli, Feng Yanhui, et al. Numerical simulation of waste heat recovery of multi grain blast furnace slag in moving bed. Journal of Engineering Thermophysics, 2019, 40(10): 2047-2414 (in Chinese) [4] Jiang BF, Xia DH, Zhang HL, et al. Effective waste heat recovery from industrial high-temperature granules: A moving bed indirect heat exchanger with embedded agitation. Energy, 2020, 208: 118346 doi: 10.1016/j.energy.2020.118346 [5] Cundall PA, Strack O. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47-65 [6] Anand A, Curtis JS, Wassgren CR, et al. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science, 2008, 63(24): 5821-5830 doi: 10.1016/j.ces.2008.08.015 [7] Gui N, Yang XY, Tu JY, et al. Effects of rocking frequency and amplitude on particle discharge in rocking bed: A DEM study. Powder Technology, 2016, 292: 31-45 doi: 10.1016/j.powtec.2016.01.015 [8] Höhner D, Wirtz S, Scherer V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technology, 2013, 235: 614-627 doi: 10.1016/j.powtec.2012.11.004 [9] Acevedo M, Zuriguel I, Maza D, et al. Stress transmission in systems of faceted particles in a silo: the roles of filling rate and particle aspect ratio. Granular Matter, 2014, 16(4): 411-420 doi: 10.1007/s10035-014-0509-1 [10] Chen YY, Liang C, Wang X, et al. Static pressure distribution characteristics of powders stored in silos. Chemical Engineering Research and Design, 2020, 154: 1-10 doi: 10.1016/j.cherd.2019.10.050 [11] Deng SN, Wen Z, Lou GF, et al. Process of particles flow across staggered tubes in moving bed. Chemical Engineering Science, 2020, 217: 115507 doi: 10.1016/j.ces.2020.115507 [12] Roux JN. Quasistatic rheology and the origins of strain. Comptes Rendus Physique, 2002, 3(2): 131-140 doi: 10.1016/S1631-0705(02)01306-3 [13] Campbell CS. Rapid granular flows. Annual Review of Fluid Mechanics, 1990, 22(1): 57-92 doi: 10.1146/annurev.fl.22.010190.000421 [14] MiDi GDR. On dense granular flows. European Physical Journal E Soft Matter, 2004, 14(4): 341-365 doi: 10.1140/epje/i2003-10153-0 [15] Pouliquen O, Chevoir F. Dense flows of dry granular material. Comptes Rendus Physique, 2002, 3(2): 163-175 doi: 10.1016/S1631-0705(02)01309-9 [16] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory description. Journal of Non-Newtonian Fluid Mechanics, 1994, 55(2): 207-208 doi: 10.1016/0377-0257(94)80007-3 [17] Johnson PC, Jackson R. Frictional collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics, 1987, 176: 67-93 doi: 10.1017/S0022112087000570 [18] Berzi D. Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mechanica, 2014, 225(8): 2191-2198 doi: 10.1007/s00707-014-1125-1 [19] Schaeffer DG. Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations, 1987, 66(1): 19-50 doi: 10.1016/0022-0396(87)90038-6 [20] Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology, 2003, 129: 72-85 doi: 10.1016/S0032-5910(02)00132-8 [21] Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature, 2006, 441(7094): 727-730 doi: 10.1038/nature04801 [22] Tian T, Su JL, Zhan JH, et al. Discrete and continuum modeling of granular flow in silo discharge. Particuology, 2018, 36: 127-138 doi: 10.1016/j.partic.2017.04.001 [23] Bouchut F, Fernández-Nieto ED, Koné EH, et al. Dilatancy in dry granular flows with a compressible μ(I) rheology. Journal of Computational Physics, 2020, 429: 110013 [24] Fei JB, Jie YX, Sun XB, et al. Experimental investigation on granular flow past baffle piles and numerical simulation using a μ(I) -rheology-based approach. Powder Technology, 2020, 359: 36-46 doi: 10.1016/j.powtec.2019.09.069 [25] 孙倩, 彭天骥, 严安等. 密集颗粒流动的连续性方法应用研究. 原子能科学技术, 2020, 359(12): 36-46 (Sun Qian, Peng Tianji, Yan an, et al. Application of continuity method in dense particle flow. Atomic Energy Science and Technology, 2020, 359(12): 36-46 (in Chinese) [26] Chauchat J, Medale M. A three-dimensional numerical model for dense granular flows based on the μ(I) rheology. Journal of Computational Physics, 2014, 256: 696-712 doi: 10.1016/j.jcp.2013.09.004 [27] Bartsch P, Baumann T, Zunft S. Granular flow field in moving bed heat exchangers: a continuous model approach. Energy Procedia, 2016, 99: 72-79 doi: 10.1016/j.egypro.2016.10.099 [28] Baumann T, Zunft S, Tamme R, et al. Moving bed heat exchangers for use with heat storage in concentrating solar plants: A multiphase model. Heat Transfer Engineering, 2014, 35(3): 224-231 doi: 10.1080/01457632.2013.825154 [29] Schneiderbauer S, Aigner A, Pirker S. A comprehensive frictional-kinetic model for gas–particle flows: Analysis of fluidized and moving bed regimes. Chemical Engineering Science, 2012, 80: 279-292 doi: 10.1016/j.ces.2012.06.041 [30] Staron L, Lagrée PY, Popinet S. Continuum simulation of the discharge of the granular silo: a validation test for the μ(I) visco-plastic flow law. European Physical Journal E, 2014, 37(1): 1-12 doi: 10.1140/epje/i2014-14001-x [31] Jop P. Rheological properties of dense granular flows. Comptes Rendus Physique, 2015, 16(1): 62-72 doi: 10.1016/j.crhy.2014.12.001 [32] Lin CC, Yang FL. Continuum simulation for regularized non-local μ(I) model of dense granular flows. Journal of Computational Physics, 2020, 420: 109728 [33] Valette R, Riber S, Sardo L, et al. Sensitivity to the rheology and geometry of granular collapses by using the μ(I) rheology. Computers & Fluids, 2019, 191: 104260 [34] Gesenhues L, Camata J, Côrte A, et al. Finite element simulation of complex dense granular flows using a well-posed regularization of the μ(I) rheology. Computers & Fluids, 2019, 188: 102-133 [35] Heyman J, Delannay R, Tabuteau H, et al. Compressibility regularizes the μ(I) rheology for granular flows. Journal of Fluid Mechanics, 2017, 830: 553-568 doi: 10.1017/jfm.2017.612 [36] Dai YL, Liu XJ, Xia DH. Flow characteristics of three typical granular materials in near 2D moving beds. Powder Technology, 2020, 373: 220-231 doi: 10.1016/j.powtec.2020.06.057 [37] Fickie KE, Mehrabi R, Jackson R. Density variations in a granular material flowing from a wedge-shaped hopper. AIChE Journal, 1989, 35(5): 853-855 doi: 10.1002/aic.690350517 -