EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计

李佳霖 赵剑 孙直 郭杏林 郭旭

李佳霖, 赵剑, 孙直, 郭杏林, 郭旭. 基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计. 力学学报, 待出版 doi: 10.6052/0459-1879-21-309
引用本文: 李佳霖, 赵剑, 孙直, 郭杏林, 郭旭. 基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计. 力学学报, 待出版 doi: 10.6052/0459-1879-21-309
Li Jialin, Zhao Jian, Sun Zhi, Guo Xinglin, Guo Xu. Lightweight design of transmission frame structures for launch vehicles based on moving morphable components (mmc) approach. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-309
Citation: Li Jialin, Zhao Jian, Sun Zhi, Guo Xinglin, Guo Xu. Lightweight design of transmission frame structures for launch vehicles based on moving morphable components (mmc) approach. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-309

基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计

doi: 10.6052/0459-1879-21-309
基金项目: 国家自然科学基金项目(11872138, 11821202, 11702048, 11732004)、国家重点研发计划(2020YFB1709401)和大连市青年科技之星项目支持计划(2019RQ045, 2019;RQ069)
详细信息
    作者简介:

    孙直, 副教授, 主要研究方向: 结构优化、复合材料结构力学等. E-mail: zhisun@dlut.edu.cn

    郭旭, 教授, 主要研究方向: 结构优化、计算力学、固体力学等. E-mail: guoxu@dlut.edu.cn

  • 中图分类号: V421.4 + 1

LIGHTWEIGHT DESIGN OF TRANSMISSION FRAME STRUCTURES FOR LAUNCH VEHICLES BASED ON MOVING MORPHABLE COMPONENTS (MMC) APPROACH

  • 摘要: 传力机架是运载火箭箭体与发动机连接的关键部件, 负责将发动机推力载荷有效的传递至箭体, 其结构的轻量化设计不仅可以保障火箭发动机的推重比、提高火箭的稳定性, 还可以为我国未来可重复使用式火箭的研究提供一定的参考. 本文在移动可变形组件(MMC)的框架下, 提出了一种解决传力机架结构轻量化设计的方法. 在该方法中, 机架结构的拓扑通过一组具有显式几何信息的组件来表示, 这使最终优化布局可以被少量的设计变量所描述. 通过分析传力机架结构设计的特点和要求, 以刚度最大化为目标, 体积分数(保证结构重量)为约束, 建立了基于MMC显式拓扑优化方法下的问题列式. 同时搭建了可对工程中传力机架结构轻量化设计的平台, 并进行相应结构的拓扑优化. 在两种载荷工况(即零位状态和摇摆状态)作用下, 最终优化结果在中间推力载荷区域与锥段相连位置之间, 形成的较大翼板结构增强了传力机架的抗弯能力. 通过与传统机架结构的对比, 证明了本文所提出方法在传力机架结构轻量化设计方面的有效性.

     

  • 图  1  MMC方法示意图

    Figure  1.  The sketch map of MMC method

    图  2  三维组件的几何描述

    Figure  2.  The geometry description of a three-dimensional structural component

    图  3  坐标变换示意图

    Figure  3.  A schematic illustration of the coordinate transformation

    图  4  传力机架结构轻量化设计流程

    Figure  4.  Lightweight design process of transmission frame structure

    图  5  传力机架的设计空间

    Figure  5.  Design space for the transmission frame structure

    图  6  传力机架的初始组件布局

    Figure  6.  The initial design for the transmission frame structure

    图  7  传力机架的优化结果

    Figure  7.  The optimized structure for the transmission frame structure

    图  8  优化迭代历史

    Figure  8.  The convergence history of the transmission frame structure

    图  9  传力机架的优化后模型

    Figure  9.  The optimized geometric model of the transmission frame structure

    图  10  优化后模型的有限元分析

    Figure  10.  The finite element analysis of the optimized geometric model

    图  11  原始设计模型

    Figure  11.  The original design model

    图  12  原始设计模型的有限元分析

    Figure  12.  The finite element analysis of the original design model

  • [1] 王玮, 张众, 陈振知等. 现役运载火箭运载能力提升措施研究. 上海航天(中英文), 2020, 37(S2): 59-64 (Wang Wei, Zhang Zhong, Chen Zhenzhi, et al. Research on measures for launch capacity improvement of launch vehicles in active. Aerospace Shanghai (Chinese &English), 2020, 37(S2): 59-64 (in Chinese)
    [2] 武丹, 陈文杰, 司学龙等. 大型固体火箭发动机发展趋势及技术关键. 武汉大学学报(工学版), 2021, 54(2): 102-107 (Wu Dan, Chen Wenjie, Si Xuelong, et al. Research on development trend and key technologies of large solid rocket motor. Engineering Journal of Wuhan University, 2021, 54(2): 102-107 (in Chinese)
    [3] 王志祥, 欧阳兴, 王斌等. 基于序列径向基函数的运载火箭蒙皮桁条结构轻质优化. 国防科技大学学报, 2021, 43(1): 57-65 (Wang Zhixiang, Ouyang Xing, Wang Bin, et al. Lightweight optimization of skinned purlin structure in launch vehicle based on sequential radial basis function. Journal of National University of Defense Technology, 2021, 43(1): 57-65 (in Chinese)
    [4] Wang ZX, Lei YJ, Wu ZP, et al. Lightweight design of cylindrical stiffened shells in launch vehicles by a dual-elite population sequential approximation optimization approach. Engineering Optimization, 2020, 53(6): 984-1004
    [5] Degtyarev MA, Shapoval AV, Gusev VV, et al. Structural optimization of waffle shell sections in launch vehicles. Strength of Materials, 2019, 51: 223-230 doi: 10.1007/s11223-019-00068-7
    [6] 冯彬彬, 袁金, 胡旭辉等. 大长径比固体火箭发动机壳体轻量化设计. 复合材料科学与工程, 2021(5): 43-48 (05):43-48 (Feng Binbin, Yuan Jin, Hu Xuhui, et al. Lightweight design of solid rocket motor casing with large aspect ratio. Composites Science and Engineering, 2021(5): 43-48 (in Chinese)
    [7] 范瑞祥, 姚瑞娟, 朱振涛等. 一种新型7台火箭发动机并联推力传递结构方案. 载人航天, 2020, 26(5): 630-634 (Fan Ruixiang, Yao Ruijuan, Zhu Zhentao, et al. A new type of thrust transmission structure of paralleled seven rocket engines. Manned Spaceflight, 2020, 26(5): 630-634 (in Chinese) doi: 10.3969/j.issn.1674-5825.2020.05.014
    [8] Cui ZX, Wang WW, Li SD, et al. Structure optimization of solid rocket engine vacuum pouring cylinder cover based on response surface. International Journal of Performability Engineering, 2019, 15(2): 475-484
    [9] Bouajila W, Shimoda M, Riccius J. Design optimization of a rocket engine's inner liner with improved response surface methodology. Engineering Optimization, 2021, 5: 1-17
    [10] 梅勇, 冯韶伟. 大推力捆绑运载火箭传力路径优化设计. 导弹与航天运载技术, 2017(4): 6-9 + 29 (Mei Yong, Feng Shaowei. An optimization design for the force transmission path on the high-thrust strap-on launch vehicle. Missiles and Space Vehicles, 2017(4): 6-9 + 29 (in Chinese)
    [11] 毕祥军, 陈炳全, 吴浩等. 运载火箭线式捆绑分离装置的设计、分析与优化. 机械工程学报, 2019, 55(14): 60-68 (Bi Xiangjun, Chen Bingquan, Wu Hao, et al. Design, analysis and optimization of linear bundled separation device for launch vehicle. Journal of Mechanical Engineering, 2019, 55(14): 60-68 (in Chinese) doi: 10.3901/JME.2019.14.060
    [12] 潘忠文, 邢建伟, 王檑等. 并联式承载减振一体的整星隔振研究. 力学学报, 2019, 51(2): 364-370 (Pan Zhongwen, Xing Jianwei, Wang Lei, et al. Research on whole-spaceeraft vibration isolation based on parallel load-bearing and damping system. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 364-370 (in Chinese)
    [13] 陈献平, 鄢东洋, 姚瑞娟等. 轻质箭体结构优化设计. 导弹与航天运载技术, 2019(2): 17-21 + 43 (02):17-21 + 43 (Chen Xianping, Yan Dongyang, Yao Ruijuan, et al. Optimization design of the rocket structure. Missiles and Space Vehicles, 2019(2): 17-21 + 43 (in Chinese)
    [14] 霍世慧, 袁军社, 徐学军等. 双推力室机架快速优化设计方法研究. 火箭推进, 2015, 41(4): 55-60 (Huo Shihui, Yuan Junshe, Xu Xuejun, et al. A rapid optimization design method for frame structure of double thrust chambers. Journal of Rocket Propulsion, 2015, 41(4): 55-60 (in Chinese) doi: 10.3969/j.issn.1672-9374.2015.04.009
    [15] 穆朋刚, 李斌潮, 杜大华等. 液体火箭发动机复合材料机架初步设计研究. 火箭推进, 2017, 43(3): 35-41 (Mu Penggang, Li Binchao, Du Dahua, et al. Preliminary design for composite thrust frame of liquid rocket engine. Journal of Rocket Propulsion, 2017, 43(3): 35-41 (in Chinese) doi: 10.3969/j.issn.1672-9374.2017.03.007
    [16] Bendsøe MP. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193-202 doi: 10.1007/BF01650949
    [17] Zhou M, Rozvany GIN. The COC algorithm, part II: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89: 309-336 doi: 10.1016/0045-7825(91)90046-9
    [18] 牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计. 力学学报, 2012, 44(3): 528-536

    Niu Fei, Wang Bo, Cheng Gengdong. Optimum topology design of structural part for concentration force transmission, Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536 (in Chinese
    [19] Mei Y, Liu GQ, Shen ZB. Optimum topology design for the concentrated force diffusion structure of strap-on launch vehicle. MATEC Web, 2017, 139: 00183 doi: 10.1051/matecconf/201713900183
    [20] 王立朋, 何飞, 郭文杰等. 载人运载火箭飞船支撑结构动响应优化设计. 载人航天, 2017, 23(2): 168-172 (Wang Lipeng, He Fei, Guo Wenjie, et al. Dynamic response optimization design of manned launch vehicle supports for spacecraft. Manned Spaceflight, 2017, 23(2): 168-172 (in Chinese) doi: 10.3969/j.issn.1674-5825.2017.02.005
    [21] Wang, J, Zhu JH, Hou J, et al. Lightweight design of a bolt-flange sealing structure based on topology optimization. Structural and Multidisciplinary Optimization. 2020, 62: 3413-3428
    [22] 刘鎏, 张蕾蕾, 宋学宇等. 复合材料壳体挂机飞行一体化结构优化设计分析. 固体火箭技术, 2019, 42(6): 679-685 (Liu Liu, Zhang Leilei, Song Xueyu, et al. Optimization design and analysis of intergrated flight structure of composite shell. Journal of Solid Rocket Technology, 2019, 42(6): 679-685 (in Chinese)
    [23] Sigmund O, Petersson J. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural and Multidisciplinary Optimization, 1998, 16(1): 68-75 doi: 10.1007/BF01214002
    [24] Guo X, Zhang WS, Zhong WL. Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. Journal of Applied Mechanics, 2014, 81(8): 081009 doi: 10.1115/1.4027609
    [25] Zhang WS, Yuan J, Zhang J, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization, 2016, 53(6): 1243-1260 doi: 10.1007/s00158-015-1372-3
    [26] Zhang WS, Li D, Yuan J, et al. A new three-dimensional topology optimization method based on moving morphable components (MMCs). Computational Mechanics, 2017, 59(4): 1-19
    [27] 袁晗, 王小军, 张宏剑等. 重复使用火箭着陆结构稳定性分析. 力学学报, 2020, 52(4): 1007-1023 (Yuan Han, Wang Xiaojun, Zhang Hongjian, et al. Stability analysis of reusable launch vehicle landing structure. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1007-1023 (in Chinese)
    [28] Guo X, Zhang WS, Zhang J, et al. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711-748 doi: 10.1016/j.cma.2016.07.018
    [29] Zhang WS, Zhang J, Guo X. Lagrangian description based topology optimization-a revival of shape optimization. Journal of Applied Mechanics Transactions of the Asme, 2016, 83(4): 193
    [30] Zhang WS, Song JF, Zhou JH, et al. Topology optimization with multiple materials via Moving Morphable Component (MMC) method. International Journal for Numerical Methods in Engineering, 2018, 113(11): 1653-1675 doi: 10.1002/nme.5714
    [31] Zhang WS, Zhong WL, Guo X. Explicit layout control in optimal design of structural systems with multiple embedding components. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 290-313 doi: 10.1016/j.cma.2015.03.007
    [32] Svanberg K. The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373 doi: 10.1002/nme.1620240207
  • 加载中
图(14)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  9
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-11-04

目录

    /

    返回文章
    返回